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Introduction

There are three sources where we can find wonder; the world, people, and ourselves. The
study of mathematics is a perfect union of all three. Firstly, our understanding of the universe
and our ability to shape it all stem from mathematics. Whether it be the analysis of statistics
used to determine patterns in the natural world, understanding the shape of a snowflake, or in
the harnessing of power from the sun, mathematics allows us to understand and probe deeper
the makeup of the universe. More abstractly, the study of mathematics provides glimpses of
the vast shadows of structures that can stem from seemingly simple and basic principles. This
leads to the ability to ask simply phrased questions that admit only profoundly deep answers.
Secondly, there is great awe that can be found in the clarity of others. The ability to step
through the doors left open by our predecessors or see doors opened by our contemporaries is
a privilege and of endless encouragement. This collective knowledge, consisting of thousands
of years of work, is important and must be made accessible to anyone who shares a passion
for its preservation and expansion. Finally, in mathematics, there is an indescribable joy and
excitement in ones own understanding of a problem or its solution.

“Mathematics directs the flow of the universe, lurks behind its shapes and curves, holds
the reins of everything from tiny atoms to the biggest stars.”

Edward Frenkel, Love and Math, 2013.

“Pure mathematics is an immense organism built entirely and elusively of ideas that
emerge in the minds of mathematicians and live within these minds.”

Yuri Manin, Mathematics as Metaphor, 2007.

“Of course, the most rewarding part is the ‘Aha’ moment, the excitement of discovery
and enjoyment of understanding something new — the feeling of being on top of a hill
and having a clear view. But most of the time, doing mathematics for me is like being
on a long hike with no trail and no end in sight.”

Maryam Mirzakhani, 2014.

1
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Understanding shapes with numbers and physics

Imagine yourself hundreds of year ago, liv-
ing on the surface of the earth. No matter
where you travel, everything looks roughly
the same. There may be mountains and val-
leys but, besides these bumps and dents, ev-
erything looks like a flat surface. Given this,
how could one hope to determine the shape
of the earth? This was of course done by
explorers travelling outwards from their ori-
gin, creating maps as they went. They would
then collect these maps into an atlas, whose
pages contained maps with instructions on
which page to go to when you reach the edge.
While each page of the atlas contains a map
that is the shape of a flat rectangle, if you
tear out the pages and line them up side by
side according to the instructions, you even-
tually have a map of the entire globe and see
that it is indeed a globe1. Of course one can
imagine that, if the laws of physics were dif-
ferent, perhaps the explorers could have re-
turned with their maps and, putting them
together, found the earth was shaped like an

enormous doughnut2. Topology is a field con-
cerned with large scale properties of spaces
and questions like determining the shape of
the earth from an atlas.

Surfaces are two-dimensional and so, given
this dimension is small enough, our brains
have the ability to simply see the differ-
ence between spaces. For example, the dif-
ference between a sphere and a doughnut
is clear, as there is a hole in one and not
the other. However, if we consider three–
dimensional spaces, things becomes much
harder to picture. What is the shape of
a three–dimensional doughnut hole? Sur-
prisingly, work throughout the last century
has shown that understanding these ques-
tions very much depends on the dimension
you are studying. Although we (or at least I)
cannot picture it, we can consider shapes in
dimensions of any whole number3. Remark-
ably, due to work of Smale, certain questions
are better understood in five or more dimen-
sions. The essential point of difference is that
there is “enough space” for certain tricks to
work. Then for dimensions zero, one, and

1Contrary to what you may find on the internet.
2A potentially much more exciting theory to be investigated that could similarly be called flat earth.
3Even wilder numbers if we consider fractals.
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two, things can be understood with similar
ease, although they behave differently. In a
somewhat conspiratorial outcome4, four di-
mensions — exactly the dimension of space-
time we seem to live in — is one of the most
difficult to understand.

The main spaces of concern to this thesis
are three dimensional. Think of spaces that
locally look like the space around you with
up and down, left and right, and backwards
and forwards. However, in these kinds of
spaces, if you travelled in a straight line far
off into the universe, you could end up back
where you started. This is just like the old
arcade game asteroids. From the work of
Thurston, culminating in the work of Perel-
man, many important questions about three
dimensional spaces are now understood. To
get a better idea of such spaces, picture your-
self floating inside a triangular based pyra-
mid. As you are floating, you see four tri-
angular walls — three around you and one
below. In each of these walls you see a door.

You float towards one of the doors and, be-
fore going through, you mark the door with a
large “1”. As you pass through the door, you
find yourself floating inside another triangu-
lar based pyramid, again with four triangular
walls and doors. You leave a mark on the
door you entered again with a “1”.

4Name of which is still pending.
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You continue to explore leaving marks “2”,
“3”, “4”, etc. as you go. At some point you
go through a door that takes you into a pyra-
mid you’ve been in before. You are back to
where you started and you see a large “1” on
one of the other doors. Now you start going
through the other doors systematically until
you find that you have left a mark on every
possible door. You have essentially mapped
out this strange layout of tetrahedral rooms.
The shape of the labyrinth you have stumbled
into is a called a three–manifold.

After your mapping of this labyrinth, you
look towards one of the corners. You realise
that there is a small vent leading to one of
the points of the pyramid. You open the vent
and find a small tunnel.

You find that there are more vents to the
rooms you have previously been in. You crawl
through the tunnel and realise that it is a
loop. The loop you have crawled through
went up and down and around and you re-
alise that this loop is all twisted around itself
into a knot.
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You realise that this loop does not have vents
to all the rooms. You find a vent that does
not go to the tunnel you have discovered and
find a new space, this time a small spher-
ical area. You discover all the areas that
the vents lead to and complete your mapping
of the labyrinth and its ventilation system.
You are led to think: what are the kinds of
labyrinths that could be constructed in a sim-
ilar way, that is, what are the possible three–
manifolds?

Surfaces without boundary, or two–
manifolds, are completely determined by
the number of doughnut holes they have.
Whereas for three–manifolds, the situation is
much more complex and there is no such clas-
sification. Three dimensional labyrinths can
be understood using the insights of Thurston.
In topology, we still consider a labyrinth
to have the same shape if all the walls are
slightly shifted, much the same way that we
ignored the details of the mountains and val-
leys when discussing the shape of the earth.
In geometry, however, there is less freedom as
measuring the distance between two points
depends on whether there is a mountain in
the way. Thurston showed that, for a given
labyrinth, there is a way to break it into
pieces that have a favourite determined ge-
ometry. One could imagine that the archi-
tects of these strange labyrinths decided that
there is a best way to construct certain sub–
labyrinths and that every possibility is then
constructed by putting these special sub–
labyrinths together.
The structure of these special geometric
labyrinths goes deeper. If one studies the ge-
ometries these eccentric architects have de-
signed, such as the angles between the vari-
ous walls, one finds that these numbers satisfy
polynomial equations such as

x2 − x+ 1 = 0 .

Another example is the length of the vents,
which can similarly be written in terms of
solutions to polynomial equations. This has
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turned the study of possible labyrinths into
the study of polynomials and, in particular,
number theory.

As the name suggests, number theory in-
volves the study of numbers. This can be
related to whole numbers or any kind of solu-
tions to polynomial equations, such as

√
2 =

1.41421 · · · , which solves the equation

x2 − 2 = 0 .

More generally, it can involve interesting
transcendental numbers like π = 3.14159 · · · .
Number theory has a tendency to pose ex-
tremely simple questions that defy simple
answers or solutions. Famously, Fermat’s
last theorem evaded solution for hundreds of
years, only to be solved by Wiles in the mid
1990s with the full use of modern mathemat-
ical methods. The statement says that there
are no whole number solutions for (x, y, z) to
the equation

xn + yn = zn ,

when n > 2 is a whole number. The proof
of this theorem uses something called mod-
ular forms. In particular, to certain polyno-

mial equations, there is an associated func-
tion called a modular form. These modular
forms show up everywhere in number theory
and provide powerful tools in understanding
the geometry and symmetries of polynomi-
als. Modular forms also show up in relation
to three–manifolds. However, this will be for
somewhat trivial examples, where the whole
space is squashed so that the volume is zero.
However, there is an extension of these func-
tions that arise conjecturally for all three–
manifolds, which will be studied in this thesis.

Back to the labyrinth or three–manifold, the
equations that are associated to a three–
manifold are determined by the numbering
of the doors and rooms of the labyrinth that
we performed previously. From this, we can
determine whether two labyrinths are differ-
ent by checking whether the equations lead to
the same kind of solutions. The connection
to numbers does not stop at polynomials. In
particular, each of these labyrinths has some
finite volume, which we can compute.

To compute this volume, we calculate the vol-
ume of each room and add them together.
There is a function that can be used to cal-
culate the volume of one of the rooms; it is
called the dilogarithm. This dilogarithm is a
deformation of Euler’s beautiful identity5,

1 +
1

4
+

1

9
+

1

16
+

1

25
+

1

36
+ · · · =

π2

6
.

The + · · · means that the sum goes on forever
— or more specifically, taking a large enough
number of terms, you can get as close to π2/6
as you like. We define the dilogarithm as

Li2(x) = x+
x2

4
+
x3

9
+
x4

16
+
x5

25
+ · · · .

5Solving the Basel problem.
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Taking the solutions to our polynomial equa-
tions and using this dilogarithm function, we
can compute the volume of the rooms and
therefore of the entire labyrinth.

After understanding the structures that un-
derpin the topology, geometry, and number
theory of this labyrinth, you find a peculiar
button on a wall in a room that you missed.
Above the large red button, there is a sign
that reads:

Achtung! Plancksches Wirkungsquantum!

Unfortunately, both your German and sense
are momentarily lacking. After having spent
some time at the Max Planck institute, the
pull of the big red button is irresistible. You

push the button. It starts slowly, but then the
room you are in becomes weird and seems to
be constantly changing. You see strange dis-
tortions out of the corners of your eyes. Ev-
erywhere you focus and observe remains al-
most as it had done previously but, when you
close your eyes, you get the feeling that you
are floating in an ever–changing chaos as the
geometry of the whole labyrinth constantly
shifts around you like a kaleidoscope.

You unwittingly just increased Planck’s con-
stant — which determines the strength of
quantum mechanical effects — to such a de-
gree that the quantum effects have started to
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overpower usual physics. You instantly gain
sympathy for Schrödinger’s poor cat.

Classical physics is, in a sense, very much re-
lated to geometry. While we are often taught
to think locally in terms of forces pushing
and pulling on objects, there exists a differ-
ent approach. In trying to understand the be-
haviour of light passing through a lens, Fer-
mat postulated that light will always travel
along the path that reaches its destination
in the shortest time. In a lens light trav-
els slower than in air and it therefore bends
to compensate. The principle of least action
generalises this to more complicated systems.
These physical system behaves in a way that
minimises something called the action. Find-
ing the evolution of a system that minimises
the action, and measuring quantities like en-
ergy, is then similar to finding the shortest
line connecting two points and measuring its
length.

Quantum mechanics takes yet another ap-
proach. In quantum mechanics, all possible
evolutions of a system contribute to a proba-
bility of a value of a particular measurement.
This means that until a measurement of some
quantity is made, the system is in a kind of
superposition of all possible states. The most
likely state in which you will find the system,
where quantum fluctuations are more stable,
is around the solutions to the classical prob-

lem of where the action is minimal. There-
fore, when Planck’s constant — the constant
that determined the strength of quantum ef-
fects — tends to zero, all other possible states
become less and less likely and we return to
the classical picture. For the labyrinth or
three–manifold, the possible states are given
by the possible geometries of the labyrinth.
The geometry that minimises the action is
given by the perfect geometry designed by the
architects.

Back in the labyrinth, you stumble around
these ever–changing geometries and make
your way to one of the vents. There, things
are not much better. To calm yourself down,
you try to measure the length of the vents
as you crawl around and around. You find a
different length each time. There seems to be
no order in this chaos until, after measuring
the length of this vent again and again, you
find that it seems to behave randomly but
certain lengths are more common. In partic-
ular, you find that the lengths vary with each
measurement, however, they are most likely
to be close to your original measurement be-
fore you clicked the button. You realise that
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this random geometry is in fact related to the
shape of the labyrinth. This again provides
a method for comparing various labyrinths.
The space is not rigid and any possible ge-
ometry, not just the perfect geometry of the
architects, can occur. However, when one
measures the geometry, certain lengths and
angles are more likely and the likelihood is de-
termined by the shape of the whole labyrinth
or three–manifold. This quantum world you
have stumbled into, depending just on the
topology of the universe, is an example of a
topological quantum field theory.

Measuring these quantum mechanical proba-
bilities, you find that the number theory goes
deeper. Not only does the most likely geom-
etry, constructed by the architects, give mea-
surements coming from solutions to polyno-
mials, but the quantum corrections are also
determined by polynomials. You make your
way back to the button and manage to lower
Planck’s constant back down to something
more reasonable. You start to ponder your
experience and try to come up with a theory

that describes the marvellous things you have
observed. You try and try but the best you
can do is find strange infinite sums like

1 + 2 + 3 + 4 + 5 + 6 + · · · .

How could one possibly make sense of this?
You think back to the Euler’s identity and
recall that he had another

1 + 2 + 3 + 4 + 5 + 6 + · · · = − 1

12
.

Remembering that Riemann made sense of
this kind of identity through something called
analytic continuation, you try to apply the
same ideas to your infinite sums. Computing
these quantities for a fixed value of Planck’s
constant ends up requiring the use of some
new and beautiful functions generalising the
modular forms from number theory. These
are called quantum modular forms and this
thesis will develop some of the basic struc-
tures that surround these fascinating func-
tions.
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This thesis
“On the whole, divergent series are the work of the Devil and it’s a shame that one dares
base any demonstration on them. You can get whatever result you want when you use them,
and they have given rise to so many disasters and so many paradoxes. Can anything more
horrible be conceived than to have the following oozing out of you:

0 = 1− 2n + 3n − 4n + · · · ,

where n is a whole number? Risum teneatis amici.
Niels Abel, in a letter to Bernt Holmboe, 1826.

Divergent series and Riemann surfaces

While divergent series may be the work of the Devil, they are an essential part of our
current theories of physics. Asymptotic series where introduced by Poincaré and Stieltjes to
give approximations to smooth functions via polynomials to any order. What distinguishes
them from power series is that these infinite sums can have a zero radius of convergence.
Using perturbation theory, physicists can give asymptotic series for quantities in certain
parameters of their theories. However, in the real world these parameters are finite numbers
and one needs to make sense of these divergent sums. One of the main issues with quantum
chromodynamics is that this parameter is quite large and the approximation immediately
has a large error. To understand this in physical theories associated to the real world would
be extremely interesting, however not an aim of this thesis. Instead, much of the motivation
of this thesis comes from trying to understand the behaviour of a physical theory of a much
simpler form. In particular, this thesis will be interested in a family of topological quantum
field theories associated to three–manifolds.

Before describing such a theory, lets consider how these divergent series were understood
historically. One of the most powerful results in complex analysis is that if a holomorphic
function has an accumulation point of zeros in its domain, then it is the zero function. This
captures exactly the kind of rigidity that comes from complex analytic functions. This also
naturally leads to the idea of analytic continuation. Once a holomorphic function is defined
on some open set, then we can try and extend the function in patches to larger and larger
domains obtained by gluing together little disks. One of the most important examples of
this was given by Riemann who considered the ζ–function studied by Euler

ζ(s) =
∞∑
n=1

1

ns
.

This equation makes sense when <(s) > 1 where it is absolutely convergent. Euler had
conjectured that this function should be defined for s ∈ R − {1} and satisfy a functional
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equation
ζ(s) = 2sπs−1 sin

(πs
2

)
Γ(1− s)ζ(1− s) .

Riemann then proved this for s ∈ C using explicitly the idea of analytic continuation.
Moreover, he showed that the function is meromorphic with a simple pole at s = 1. In this
way, we can make sense of the equation

1 + 2 + 3 + 4 + 5 + · · · “ = ” ζ(−1) = − 1

12
.

Analytic continuation led Riemann to define Riemann surfaces, which come from the local
structure of an analytic function that is continued to the largest possible domain. This do-
main will be a universal cover. Such a function and domain, has symmetries given by Deck
transformations. When we quotient by these symmetries this leads to a Riemann surfaces
with potentially interesting topology6. Remarkably, for compact Riemann surfaces, it was
then understood that these all came from algebraic curves giving rise the Serre’s GAGA prin-
ciple. Riemann also described the complex structure of any simply connected and bounded
domain in the complex plane. This was done via the Riemann mapping theorem, which
shows that these domains are all equivalent to an open unit disk with the standard complex
structure. Poincaré and Koebe then went onto show the famous trichotomy of uniformisa-
tion. This states that any simply connected Riemann surface is isomorphic to the Riemann
sphere CP1, the complex plane C, or the complex unit disk. Uniformisation also implies ge-
ometric content. In particular, for some Riemann surface, one of these spaces will appear as
the universal cover. These three spaces then have natural geometries the first spherical, the
second Euclidean, and the third hyperbolic respectfully. Taking quotients of these geome-
tries then give the Riemann surfaces natural geometric structures. The only Riemann surface
with spherical geometry is CP1 and the only Riemann surfaces with Euclidean geometries
are tori. All the others are hyperbolic and come with a moduli space of such structures of
real dimension 6g − 6 where g is the genus of the underlying topological surface.

From three–manifolds to geometry to number theory

Based on this beautiful theory of surfaces, one can ask what happens in one dimension up.
Topologically, these spaces immediately become much more complicated. However, there
are still many descriptions of three–manifolds as combinatorial objects with a known set of
equivalences. Unfortunately, determining whether two sets of this combinatorial data gives
the same three–manifold is not a solvable problem. Also, these spaces are now three real
dimensional and therefore cannot carry something like a complex structure. However, as

6Of course this could lead to singular spaces. One should then not quotient by the whole set of auto-
morphisms. This will then lead to a Riemann surface with automorphisms, which is generically not the
case.
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is often the case, some form of uniformity in mathematics prevails. Indeed while complex
structures can no longer be defined, we can still define geometric structures. For real surfaces
we had three geometries while for three dimensional manifolds there are eight. These different
geometries were introduced by Thurston [184]. He argued that every three–manifold can be
broken up into pieces where each piece has a canonical geometric structure. This became
know the geometrisation conjecture. As in the case of surfaces, all but one of the geometries
appear as somewhat special cases. It is again hyperbolic geometry that provides the most
general example of geometric structures. This program, initiated by Thurston, led ultimately
to the work of Perelman [155, 157, 156], which as a by–product proved that every compact
simply connected three–manifold is isomorphic to the three–sphere, a theorem previously
known as the Poincaré conjecture.

Importantly, for three dimensional complete hyperbolic structures, there are no moduli in
contrast to surfaces. This follows from Mostow–Prasad rigidity [135, 159]. Combining this
with the fact that the isometries of hyperbolic three space are given by PSL2(C), we see
that these unique geometric structures associated to three–manifolds give rise to solutions
to polynomials and therefore to number fields. This has led to the following diagram

Topology Geometry Number theory .

The connection to number theory goes quite deep. For any three–manifold and a repre-
sentation of the fundamental group into PSL2(C), we can define an element of the Bloch
group [180, 145, 210] or the third algebraic K–group of the algebraic numbers, K3(Q). The
so called regulator gives a map from K3(Q) to R, which for the three–manifold corresponds
to the volume of the associated geometric structure. Here one sees a remarkable connection.
If the volume of the three–manifold7 is not zero for some representation, then the manifold
is hyperbolic and if it is zero, it is not. Similarly, if the regulator vanishes for every Galois
conjugate of an element of K3(Q), then the element is torsion. This shows that there is a
connection between being torsion in algebraic K–theory and being hyperbolic as a three–
manifold. One could think that was the end of it. However, in work on conformal field
theory, Nahm [142] introduced a striking conjecture relating K–theory to modular forms.

Modular forms and asymptototics

Modular forms [32, 176] are functions with many arithmetic symmetries. This means they
store an enormous amount of information about numbers and varieties. The amount of
symmetries they satisfy often leads to non–trivial finite dimensional vector spaces of such
functions. Having a finite dimension space of course means that, upon checking some small
set of information, we can completely determine a function in this space. Modular forms first

7This manifold we are considering should of course be one of the building blocks of Thurston and not a
collection of these, which may contain both hyperbolic and non–hyperbolic pieces.
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arose as θ–functions. These θ–functions can be described as generating functions counting
the number of ways of representing a number via some quadratic form. The θ–function

ϑ00(q) =
∑
k∈Z

qk
2/2

was crucial in Riemann’s proof of the functional equation of the ζ–function. Here the impor-
tant property of the θ–function making it a modular form is that for q = e(τ) = exp(2πiτ)

ϑ00(−1/τ) = e(−1/8)
√
τϑ00(τ) .

Taking the Mellin transform of both sides of this equality gives rise to the functional equation
for the ζ–function.

Let h = {z ∈ C : =(z) > 0}. A function f : h→ C is called a modular form of weight k ∈ Z
on some discrete subgroup Γ ≤ SL2(R), if for γ = [a, b; c, d] ∈ Γ we have

f
(aτ + b

cτ + d

)
= (cτ + d)kf(τ) ,

and some condition of the growth as τ → ∞. Already we see that ϑ00 is not quite of this
form as k = 1/2 and there is an eight root of unity appearing. These are of course related
and the main point is that we can replace (cτ + d)k by something called an automorphy
factor. There are many details like this that one can specify, which — while leading to
infinitely many such functions — when specified give rise to finite dimensional spaces. Once
modularity is proved, many identities can then be checked for some finite set of data, which
lead to identities between functions like an identity due originally to Jacobi,(∑

k∈Z

qk
2/2
)4

=
(∑
k∈Z

(−1)kqk
2/2
)4

+
( ∑
k∈Z+1/2

qk
2/2
)4

.

In this thesis, the examples we will be interested in are related to Γ = SL2(Z). This is
generated by the matrices

T =

(
1 1
0 1

)
, and S =

(
0 −1
1 0

)
.

Importantly, the affect of the T matrix on modular forms is that

f(τ + 1) = f(τ) .

Therefore, modular forms on SL2(Z) have Fourier series and we can write them in the variable
q = exp(2πiτ), which is a variable on the unit disk. For modular forms, the transformation
under S determines the asymptotic behaviour as q → 1. Thinking in the variable q we
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see that if e(−1/τ) is close to 1 so the boundary of the unit disk then e(τ) is close to 0.
Therefore, the asymptotics near 1 are completely determined by the behaviour around q = 0.
This similarly works for other roots of unity. For example, taking γ = [a, b; c, d] ∈ SL2(Z)
we see that when e((aτ + b)/(cτ + d)) is close to e(a/c) that e(τ) is close to 0. This means
that around each root of unity the behaviour is completely determined by the behaviour
near q = 0.

One of the fathers of the theory of modular forms was Ramanujan. While he thought
very differently from the modern perspective, his intuitive approach led to many deep and
remarkable insights. Another set of objects that Ramanujan had great intuition for was q–
hypergeometric functions. These classes of functions rarely overlap but a beautiful example
where they do are the Rogers–Ramanujan functions [164]. Nahm [142] studied certain q–
hypergeometric sums generalising the examples of Rogers–Ramanujan. To these functions,
one can find associated elements of K3(Q). Nahm showed, in examples, that these elements
being torsion led to the q–hypergeometric functions that happened to be modular forms.
This beautiful connection has been partially understood but even the full formulation of
the conjecture has not been precisely given [206, 191]. Regardless, the idea that one could
relate modular forms to three–manifolds is enticing. Indeed, the first evidence that such a
connection could exist was given in the work of Lawrence–Zagier [118]. They showed that,
for Poincaré’s famous homology sphere, certain quantum invariants are related to modular
forms. What became clear after the work of Zwegers [211] is that, more specifically, they
were related to the mock modular forms of Ramanujan [163]. They also outlined how similar
statements should hold more generally, which was later studied in detail by Hikami [99]
and [39].

Quantum field theory and topology

To understand how Lawrence–Zagier came to these modular objects, we need to investigate
a different thread of ideas that came to fruition in the 1980s. Firstly, in the first half of the
20th century, Alexander [2] defined certain invariants of knots and links. These invariants
took the form of polynomials. These polynomials satisfied certain skein relations, which were
forgotten until they were rediscovered by Conway [41] at the beginning of the 1970s. These
skein relations gave a simple combinatorial definition of the Alexander polynomial from link
diagrams and could be used to effectively compute it8. Jones, in the study of representations
of von Neumann algebras, came to an almost identical set of relations that gave rise to a
new polynomial invariant [103, 104]. This polynomial invariant was a completely unexpected
development and spurred many similar constructions [63, 161]. All of these descriptions use
a link diagram, an inherently two dimension object. This contrasted the original definition
of Alexander, which — while being computable using link diagrams — had an inherently

8See Figure 2.2 and equation (2.1).
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three–dimensional definition. This led Atiyah to ask whether the Jones polynomial could
similarly be given a three dimensional interpretation.

Witten [195] then used ideas from physics, which involve infinite dimensional integrals that
remain undefined, to construct the framework of a theory that should give rise to the
Jones polynomial and much more. This theory used the classical geometric ideas similar
to Thurston but instead of choosing a specific canonical geometry to study the manifold
one integrates over all possible geometries. This integral is done against a special func-
tion called the Chern–Simons invariant related to the classical geometry [40, 37]. As this
is not mathematically defined, one could argue as to what this theory could be used for.
However, Witten’s insights gave such a rich array of relations which, essentially uniquely
determined such a theory — if it were to exist. Soon after Witten’s proposal, Reshetikhin–
Turaev [166, 167] gave a completely mathematical construction of Witten’s theory using
quantum groups and their representations. This construction not only proved invariance of
such objects, but gave effective ways to compute these invariants. Invariants of this kind
became known as topological quantum field theories and were axiomatised by Atiyah [10, 11]
following the ideas of Segal [175].

From Witten’s perspective — using functional integrals — there should be some asymptotic
expansion that should come associated to these invariants as we vary the analogue of Planck’s
constant towards zero. While these asymptotic series, coming from some infinite dimensional
analogue of stationary phase approximation, are completely natural from the physical and
more geometric perspective, from the mathematical construction of these invariants, it is not
in the least bit clear. This leads to some remarkable mathematical conjectures that remain
open for all but some small collection of three–manifolds. The first case that I’m aware of a
proof of such a statement comes in the work of Lawrence–Zagier for the Poincaré homology
sphere.

Therefore, coming back to Lawrence–Zagier, they considered9 the q–series
∞∑
k=0

qk(qk; q)k = 1 + q + q3 + q7 − q8 − q14 − q20 − q29 + · · ·

where (a; q) =
∏n−1

j=0 (1 − aqj). While this sum converges as a q–series it also makes sense
at root of unity, where the sum becomes finite as the number of non-zero terms is given
by the order of the root of unity. Evaluating at roots of unity gives precisely the Witten–
Reshetikhin–Turaev invariant of the Poincaré homology sphere Σ(2, 3, 5). This q–series on
the other hand can be described as the Eichler integral of a unary θ–series. This then inherits
certain modular behaviour. In particular, the additive failure of modularity of this q–series
has an analytic continuation to the cut plane. These functions have asymptotics at each root

9This q–hypergeometric formula was not known at the time and they present this in a different fashion
using Eichler integrals.
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of unity that are combinations of three asymptotic series. In particular, for q = exp(2πi/n)
where n ∈ Z as n→∞

∞∑
k=0

qk(qk; q)k ∼
√
−in exp

(
− πi

60n

)√1

2

(
1− 1√

5

)
exp

(
− πin

60

)
+
√
−in exp

(
− πi

60n

)√1

2

(
1 +

1√
5

)
exp

(
− 49πin

60

)
+ 1− 2πi

n
+

9

2

(2πi)2

n2
− 205

6

(2πi)3

n3
+ · · · .

The remarkable observation is that if q̃ = exp(−2πin) and n ∈ Q with bounded denominator
but still tending to ∞, then we find that

∞∑
k=0

qk(qk; q)k ∼
√
−in q 1

120

√
1

2

(
1− 1√

5

)
q̃−

1
120

∞∑
k=0

q̃k(q̃k; q̃)k

+
√
−in q 1

120

√
1

2

(
1 +

1√
5

)
q̃

49
120

∞∑
k=0

q̃k(q̃k+1; q̃)k

+ 1− 2πi

n
+

9

2

(2πi)2

n2
− 205

6

(2πi)3

n3
+ · · · .

This is just the asymptotic series is associated to

S =

(
0 −1
1 0

)
∈ SL2(Z) .

Replacing this by another element [a, b; c, d] ∈ SL2(Z), we take q̃γ = exp(2πi(an+b)/(cn+d))
and again find three asymptotic series associated to the root of unity exp(2πia/c). This
modular property is some kind of generalisation to the usual definition of a modular form.
In fact, this modularity can be vastly extended. Using Zwegers’s theory of mock modular
forms, one can find an analytic function Ωγ such that 1∑∞

k=0 q̃
k
γ(q̃kγ ; q̃γ)k∑∞

k=0 q̃
k
γ(q̃k+1

γ ; q̃γ)k

 = Ωγ(τ)

 1∑∞
k=0 q

k(qk; q)k∑∞
k=0 q

k(qk+1; q)k

 .
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This extremely simple example lays out the properties that will underlie all the examples we
will consider in this thesis. The main points are as follows:

• to each root of unity we can associate a vector of formal series10,

• in the upper half plane (resp. in the lower half plane) we have a vector of q–series
(resp. q−1 series) that have asymptotics as we approach a root of unity agreeing with
the asymptotic series,

• this vector f(q) of asymptotic series and q±–series satisfies a modular transformation

f(q̃γ) = Ωγ(τ)f(q)

where Ωγ has analytic continuation to a cut plane Cγ = C− sign(c)R≤−sign(c)d/c when
c 6= 0.

We see that Ω has the same asymptotics as the prescribed formal series and it is analytic on
a dense, open, and connected set in C.

Quantum modular forms: from experiments to proofs

These remarkable properties of quantum invariants, computed in [106], were then studied
for some simple knots by Zagier. The first [204] was the simplest knot called the trefoil.
This was then extended to the next simplest knot, the figure eight knot in [208]. The trefoil
behaves much in the same way to the Poincaré homology sphere and this follows from the
fact they are both not hyperbolic and therefore their invariants behave like mock modular
forms. The figure eight knot is the simplest hyperbolic three–manifold and its quantum
invariants already behave in much more interesting ways. To understand this leads us to the
work of Kashaev.

In somewhat parallel to much of the development, Kashaev [106, 107] defined invariants of
knots using a quantisation of the dilogarithm called the Faddeev quantum dilogarithm [58,
59] denoted here11 ΦS(z; τ). Kashaev [108] then noted that taking the asymptotics of his
invariant took the quantum dilogarithm to the classical dilogarithm for each tetrahedron. He
conjectured that his invariant should then have asymptotics given by the hyperbolic volume
of the knot’s complement. It was then shown by Murakami–Murakami [138] that Kashaev’s
invariant reproduced Jones’s invariant at roots of unity. This then gives the conjecture
that the asymptotics of the Jones invariants should grow exponentially like the hyperbolic
volume of the knot complement. This conjecture became known as the volume conjecture.
This conjecture is one of the outstanding problems in quantum topology.

10These formal series are also defined over some Kummer extensions to one of the fields associated to the
three–manifold.

11See Section 8.10 for the comparison with the more standard notation.
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This conjecture shows that the next simplest example of a knot after the trefoil, the figure
eight knot, will already have to be much more complicated behaviour. The study of this
example in full was taken up by Garoufalidis and Zagier [86, 85] in work over the last
decade. The first step was taken by Zagier in [208] where remarkable modular properties of
the Kashaev invariant

∞∑
k=0

(−1)kq−k(k+1)/2(q; q)2
k ,

were discovered experimentally. The main observation was that for the complexified volume
of the figure eight knot, VC = 2.0299 · · · i, computing the assymptotics of the Kashaev
invariant as n→∞ with n ∈ Q where q̃ = e(−1/n) and q = e(n)

∞∑
k=0

(−1)kq̃−k(k+1)/2(q̃; q̃)2
k ∼

∞∑
k=0

(−1)kq−k(k+1)/2(q; q)2
k

× e
( VC

(2πi)2
n
) e(1/8)√√

−3

(
1− 11

24
√
−3

3

2πi

n
+

697

1152
√
−3

6

(2πi

n

)2

+ · · ·
)
.

The next surprise came from a seemingly unrelated problem to do with quantum spin net-
works [81, 85]. There, the q–series

g(q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

appeared with seemingly nothing to do with the figure eight knot. When computing the
asymptotics as q → 1, Garoufalidis and Zagier realised that this has exactly the same
asymptotic series as the Kashaev invariant of the figure eight knot but missing an asymp-
totic series associated to substituting formally q = eh in the Kashaev invariant. From the
physical perspective, this missing asymptotic series is associated to a trivial connection,
which corresponds to some completely degenerate geometry.

Over the proceeding years many beautiful numerical observations were made by Garoufalidis
and Zagier. For example, using optimal truncation and smooth optimal truncation [87] of
the asymptotic series arising for the Kashaev invariant they found that numerically

∞∑
k=0

(−1)
k
q̃
−k(k+1)/2

(q̃; q̃)
2
k

∼
∞∑
k=0

(−1)
k
q
−k(k+1)/2

(q; q)
2
ke
( VC

(2πi)2
n
) e(1/8)√√

−3
SmOpTrunc

(
1−

11

24
√
−33

2πi

n
+

697

1152
√
−36

( 2πi

n

)2
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)

+ SmOpTrunc
(
1−

( 2πi

n

)2
+

47

12

( 2πi

n

)4
+ · · ·

)
+

1

2

∞∑
k=0

(−1)
k

(q
k+1 − q−k−1

)q
−k(k+1)/2

(q; q)
2
ke
( −VC

(2πi)2
n
) e(1/8)√
−
√
−3

SmOpTrunc
(
1 +

11

24
√
−33

2πi

n
+

697

1152
√
−36

( 2πi

n

)2
+ · · ·

)
.

This is of the same form of the asymptotics as the quantum invariant of the Poincaré ho-
mology sphere. The main difference is the appearance of factorially divergent series at
exponentially large order.
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Many of the observations that Garoufalidis and Zagier had made were then understood
with new invariants defined by Andersen–Kashaev [8, 7, 9]. These invariants again used
the Faddeev quantum dilogarithm and were called state integrals. They were introduced
originally by Hikami [98] and subsequently studied in [47, 49, 45]. All these previous attempts
lacked a precise contour of integration, which was supplied by Andersen–Kashaev [8]. The
key to understanding many of the observations related to the modular behaviour of these
quantum invariants was laid out in two papers of Garoufalidis–Kashaev [72, 73]. In these
two papers, it was shown how the state integrals of Andersen–Kashaev could be written as
bilinear combinations of q and q̃ functions. These functions are defined on C − (R − Q).
There was one point that was still missing. In particular, these state integrals factorised
into two sets of seemingly different q and q̃ functions. Garoufalidis and Zagier realised
that these bilinear combinations could be described as entries of a matrix product. The
final step needed to give the modular properties was then understood as certain quadratic
relations between the q–series or the asymptotic series in [85, 86]. This was interpreted
in [82] as dualities between associated q–holonomic modules. Essentially, this writes one
of the matrices that appears in the factorisation as the inverse of the other. Together the
factorisation and quadratic relations give a method to prove these modular properties for
essentially all simple examples. This leads to matrix equations

U(q̃γ) = Ωγ(τ)U(q)∆(τ)

where ∆ is some diagonal weight matrix. The matrix Ω appears in the place of the asymptotic
series. Of course taking the quotient of the matrices writes this Ω as an analytic function the
interior of C − (R − Q). The remarkable property of Ω is that it has analytic continuation
to a cut plane. This gives an analytic function on some open subset of R. The main method
of proof is to write Ω in as an integral that clearly extends holomorphically. Functions U
satisfying this kind of equation are called quantum modular forms and the associated Ω is
called its cocycle. This was understood [73, 72, 85, 86] for q–series and functions similar to
the Kashaev invariant. However, for the figure eight knot these functions do not see the
asymptotic series

1− ~2 +
47

12
~4 + · · · .

In other words, the matrix valued quantum modular form constructed12 in [85, 86] for the
figure eight knot was only a 2× 2 and we want a 3× 3.

12In fact they had a 3× 3 matrix at Q. However, the analytic extension property of Ω was conjectural.
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The missing series and q–difference equations

While the Andersen–Kashaev invariant is a bona fide invariant of knots, it has long been
known that it is missing important information needed to define a fully fledged topological
quantum field theory in a similar sense to the WRT theory. An important step towards
understanding how this could be made possible involves finding a q–series, like the series
g(q), that has asymptotics that include the missing asymptotic series associated to the
trivial geometry or SL2(C)–connection. The key to the construction of such a series relies
on a different structure that these quantum invariants satisfy. It was shown by Garoufalidis
and Lê [77], that the Jones invariant satisfies a system of q–difference equations and is in
fact holonomic. Garoufalidis then conjectured that the characteristic varieties associated
to these q–difference equations agree with a classical moduli of certain geometric structures
associated to the knot called the A–polynomial [42, 66]. In the physical literature, Gukov
argues that there could be a theory like Witten’s associated to three–dimensional gravity,
which should give an associated quantisation of the A–polynomial [91]. This link between
the q–difference equations satisfied by the Jones invariant and the A–polynomial has become
known as the AJ conjecture.

It became clear that to find a q–series that sees the missing asymptotic series, we need a basis
of solutions to the q–difference equations. This was also taken up recently in the physics
literature [92, 153]. However, a clear downside to this approach is that these q–difference
equations are almost impossible to compute for complicated knots. However, any theory
needs to be understood first for simple knots. For the Kashaev invariant, there was no
such q–difference equation and this approach will then not work. In trying to understand
some of their observations associated to Kashaev’s invariant, Garoufalidis and Zagier noticed
that there in fact seemed to be a naturally appearing family of invariants associated to the
Kashaev invariant. Garoufalidis and Kashaev [71], then introduced an additional parameter
in the definition of the Jones invariant, which gives rise to a sequence of invariants. This
importantly gives rise to a sequence of invariants specialising to the Kashaev invariant.

These q–difference equations satisfied by knot invariants can often be made inhomogeneous.
The q–series g(q) naturally satisfies a homogenous version of this equation. Therefore, to
find a q–series seeing all asymptotic series, we need the q–series to satisfy the inhomogenous
recursion. If one considers mock modular forms exactly the same thing happens. In partic-
ular, mock modular forms satisfy inhomogeneous versions of q–difference equations satisfied
by modular forms. This appears for indefinite and partial θ–functions as well, where we only
sum over part of the lattice, which leads to boundary terms. Remarkably, the initial obser-
vations of Lawrence–Zagier that, with the work of Zwegers, mock modular forms describe
quantum invariants of non–hyperbolic manifolds, also applies to finding the missing q–series
associated to hyperbolic examples. This is summarised for the figure eight knot in the
following theorem, which closes this aspect of the study of various works [85, 86, 69, 68, 70].
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Theorem. (Theorem 7) The Kashaev invariant of 41, given by

J̃0(q) =
∞∑
k=0

(−1)kq−k(k+1)/2(q; q)2
k ,

and the q–series

G(q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

(
1

8

(
− 4G1(q) + 2

k∑
`=1

1 + qj

1− qj
)2

− 1

24
+

k∑
`=1

q`

(1− q`)2

)
,

are part of a vector–valued quantum modular form whose cocycle is given by a matrix of state
integrals one of which is given by∫

Cτ

e(z(z + 1 + τ)/2τ)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz .

What about closed manifolds?

Much of this story was carried out for knots and in particular their compliments. How to
make sense of this for closed manifolds remained somewhat elusive. However, we have the
invariant defined by Reshetikhin–Turaev that makes sense at roots of unity. Therefore, we
can carry out exactly the same experiments and proof for the WRT invariant as we did for
the Kashaev invariant. The question then becomes how to extend this to the case of q–series.
Gukov–Manolescu [92] took the solutions to the difference equations of the Jones invariant
as q–series and gave a surgery procedure to give conjectural q–series invariants of closed
three–manifolds called Ẑ13. The passage from q–difference equation to solutions as q–series
requires a q–difference equation. Again this was lacking for closed manifolds. Moreover,
the difference equations for knots are associated to the boundaries and if we have none how
could we expect a canonical difference equation?

The key to constructing difference equations for closed three–manifolds is to forget about
requiring something canonical for just the closed three–manifold and instead associated some-
thing for the closed manifold with additional information. In particular, if we take a closed
three–manifold and a link inside the three–manifold, then there is a canonical set of dis-
crete q–difference equations whose span gives rise to a vector space over Q(q) that is finite
dimensional. This finite dimensional space is an invariant of the closed three–manifold.

13I will often write as if Ẑ is an invariant of three–manifolds but I want to be clear that currently I don’t
know a proof of this or even a proper definition. Potentially the methods used for computations could be
made into a more precise definition but unfortunately the current attempts to construct R–matrices [154]
require restriction on the braids which could lead to disconnected set of combinatorial data where it can be
defined and give rise to different q–series for knots. Then surgery giving rise to invariants is another question.
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Theorem. (Theorem 1) If M is an closed manifold obtained by surgery on the framed link L
then for the coloured Jones polynomial J̃ , σL the signature of the link and q = e(a/c) taking

X(M,L, b; q) =

(
2e(−1/8)(q1/2 − q−1/2)∑4c

k=1 q
k2/4

)`
e
(−3σL

8

)
q

3σL
4

×
c−1∑

N1,··· ,N`=1

J̃N1,··· ,N`(L; q)
∏̀
j=1

qbjNj/2 − q−bjNj/2
q1/2 − q−1/2

,

the space
ΥM = SpanQ(q){X(M,L, b; q) : b ∈ Z`}

is an invariant of M . Moreover, ΥM is finite dimensional.
Finding a solution to one of these sets of q–difference equations in q–series should then give
something related to the three–manifold in a similar way to the construction of Gukov–
Manulescu for knots and their two variable series. In examples, solving these q–difference
equations gives rise to families of q–series invariants that specialise to Ẑ much in the same way
the descendant Kashaev invariants specialise to the Kashaev. This search for solutions to q–
difference equations is related to the belief that q–difference equations from three–manifolds
are modular in the sense of [82].

It is natural to ask how the WRT invariant and the Ẑ invariant are related more explicitly.
Previously [92], it was thought that the Ẑ series had radial limits giving the WRT invariant.
This seems not to be the case. However, as a definition is currently not available, this is a
slightly tricky statement to make. Regardless, for q–series associated to simple manifolds, we
can find q–hypergeometric formulae for these conjectured invariants. These series can then
be proved to grow exponentially as q approaches a root of unity. These formulae allow us to
take a state integral that factorises at the rational numbers in terms of the WRT invariant
and in the upper half plane as the Ẑ invariant in a completely analogous way to the situation
for knots discussed in [70]. For half surgery on the figure eight knot, we have the following
theorem.
Theorem. (Theorem 8) The WRT invariant of 41(1, 2), given by

X(q) =
∑

0≤`≤k

(−1)kq−
1
2
k(k+1)+`(`+1) (q; q)2k+1

(q; q)`(q; q)k−`
,

and the Ẑ invariant

Ẑ(q) =
∑

0≤k≤`

(−1)k+`q
1
2

3k(k+1)+ 1
2
`(`+1)−k (q; q)`

(q; q)2k(q; q)`−k
,

are part of a vector–valued quantum modular form whose cocycle is given by a matrix of state
integrals one of which is given by∫

Cτ

∫
Cτ

e(3z1(z1 + 1 + τ)/2τ + z3(z3 + 1 + τ)/2τ − z1(m + 1 + (m′ + 1)/τ))ΦS(z3 + 1 + τ ; τ)

(1− e(z1/τ))(1− e(z3/τ))ΦS(z3 − z1 + τ + 1)ΦS(2z1 + 1 + τ ; τ)
dz1dz3 .
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What about three–manifolds?

Many of the observations about the behaviour of quantum invariants of three–manifolds seem
to stem from properties of a, most likely, larger class of functions. These functions are proper
q–hypergeometric functions. These functions can be expressed in terms of q–Pochhammer
symbols and have the form ∑

k

e(ν(k))qQ(k)+µ(k)
∏
j

(q; q)±λj(k) ,

where Q is a quadratic form and µ, ν, λ are linear forms. Indeed, all the proofs of quantum
modularity follow from properties of the q–Pochhammer symbol all essentially coming back
to the Faddeev quantum dilogarithm14. For example, the sums studied by Nahm give rise
to quantum modular forms, though there is no reason that they should be related to a
three–manifold.

Theorem. (Theorems 5 and 6) For A ∈ 2Z, the q–series

fA(q) =
∞∑
k=0

q
A
2
k(k+1)

(q; q)k
,

and, for
1−Xi = XA

i ,

the functions such that for q = e(a/c)

fA,i(q) =

∏|c|−1
`=1

(
1− q`

) `
|c|−

1
2√

|c|Xi/(1−Xi) + A|c|

|c|−1∑
r=0

qAr(r+1)/2X
Ar/|c|
i X

A/2|c|
i∏|c|−1

s=0 (1− qr+s+1X
1/|c|
i )

r+s+1
|c| −

1
2

,

are parts of vector–valued quantum modular forms who’s cocycle is given by a matrix of state
integrals one of which is given by∫

Cτ

e(Az(z + 1 + τ)/2τ)

ΦS(z + 1 + τ ; τ)
.

I expect that similar properties will hold for a large class of these proper q–hypergeometric
functions. These Nahm sums are the second set of non–trivial infinite families of quantum
modular forms I know. The other family is Heine’s q–hypergeometric functions studied
in [82]. I also expect that many of the properties observed will hold for deformations of
q–hypergeometric functions. Indeed, the functions introduced for the figure eight knot G(q)
come from a deformation of g(q) however on some cone as opposed to the full lattice15. To
illustrate how this works I provide a proof that the deformation of the Roger–Ramanujan
functions gives rise to a usual Jacobi form.

14To quote Kashaev: "The most beautiful function in the world". Les Diablerets, 2023.
15Recall the comments on mock modularity.
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Theorem. (Theorems 2 and 3) The function

g(x; q) =

(
q−

1
60G(x; q)

q
11
60H(x; q)

)
.

where

G(x; q) =
(qx; q)∞
(q; q)∞

∑
k∈Z

qk
2
x2k

(qx; q)k
, and H(x; q) =

(qx; q)∞
(q; q)∞

∑
k∈Z

qk
2+kx2k+1

(qx; q)k
,

is a vector–valued Jacobi form of weight 0 and index 2 so that,

g(z + 1; τ) = g(z; τ)

g(z + τ ; τ) = q−1x−2g(z; τ)

g(z; τ + 1) =

(
e
(
− 1

60

)
0

0 e
(

11
60

)) g(z; τ)

g
(z
τ

;−1

τ

)
= e

(z2

τ

) 2√
5

(
sin 2π

5
sin π

5

sin π
5
− sin 2π

5

)
g(z; τ) .

The recipe for proving quantum modularity of q–hypergeometric functions is as follows:

(1) take your q–hypergeometric function∑
k

qQ(k)+µ(k)
∏
j

(q; q)±λj(k) ,

and, using some q–series identities, write this in terms of functions that make sense
when |q| 6= 1 multiplied by modular forms,

(2) Take a state integral of the same form as your sum where you replace the sum by an
integral and the Pochhammer symbols by Faddeev quantum dilogarithms, which — if
the expression is as above — is∫

e(Q(z)/2τ + µ(z)/τ)
∏
j

ΦS(λj(z); τ)±dz ,

(3) factorise the state integral using the residue Theorem [73] of the fundamental lemma
of [72],

(4) prove the quadratic relations using Wilf–Zeilburger theory [194],

(5) combine this all together as a vector or matrix valued equation using the various
identities along the way.

Every step is completely clear besides the first. In this thesis, I do not tackle the question
of when such a procedure can be carried out, however in all of our examples will illustrate
how such a procedure works.
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Resurgence and quantum modularity

Before closing the introduction for a more detailed description of the contents of each sec-
tion, an important set of conjectures relating to resummation of asymptotic series of q–
hypergeometric sums has emerged in recent years and should be discussed. If you take a
random sequence of elements on the unit disk an, then the series

f(x) =
∞∑
n=0

anx
n (1)

will converge to an analytic function on the unit disk but, by a theorem of Borel, will almost
always have no analytic continuation for |x| ≥ 1. Often we call |x| = 1 the natural boundary
of such a function. If one instead assumes that f is analytic on almost all rays centred on
the origin with sub–exponential growth, then we can take the Laplace transforms along any
ray where the function is analytic and find an asymptotic expansion∫ ∞

0

exp(−ζ)f(ζξ)dζ ∼
∞∑
n=0

n!anξ
n .

Assuming that f is nice enough, the function on the left will have analytic continuation
to at least some half plane. Resurgence is related to an inverse problem of finding an
analytic function with prescribed asymptotics. The main point is that after applying the
Borel transform, which divides each term in the expansion by a factorial, we look for endless
analytic continuation. If this exists with sufficient bounds at infinity we can take the Laplace
transform and find the desired function. This process is called Borel resummation. If this
works, it of course depends on the argument of ξ. If we cross an isolated singularity of the
integrand of the Laplace transform, the integral will jump by the keyhole integral around the
ray emanating from the singularity (or branch point). These keyhole integrals can then be
described in terms of other functions with their own asymptotic expansions. We can apply
the same analysis to these functions and find new functions. If this process of constructing
functions and asymptotic series closes up with some finite set of asymptotic series, then our
original asymptotic series is called resurgent. For resurgent series, at each of the singularities
in the integrand of the Laplace transform, we find that the keyhole integrals are related to
this finite set of functions constructed with some additional constant. These constants are
called Stokes constants. The theory of resurgence is interested in computing these sets of
asymptotic series, all related each other, and these Stokes constants. Fundamentally, this
theory relies on analytic continuation.

In relation to q–hypergeometric functions, Garoufalidis [67] conjectured that generating series
of WRT and Kashaev invariants should have endless analytic continuation with explicit
singularities. This is equivalent to the more usual description of resurgence we have just
described. Then, in recent work [69, 68, 70], it was understood how to conjecturally compute
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both the Borel resummation of asymptotic series associated to simple knots and also all of
the Stokes behaviour. While both of these conjectures are related to knots, it appears that
they hold more generally for asymptotic series coming from q–hypergeometric functions. To
compute the Borel resummation and Stokes phenomenon associated to asymptotic series
coming from q–hypergeometric functions, one can use quantum modularity. Instead of using
the cocycle Ω , you can use the Borel resummation of the asymptotic series and conjecturally
find an expression of quantum modularity giving a similar equality to the one with Ω. This
then gives an expressions for the Borel resummation in terms of Ω. Then using Ω±γ just
above and below the reals, we can compute the Stokes phenomenon by taking a quotient
of the two cocycles. The quantum modularity shows that this Stokes automorphism will
be a q–series. Then conjectures on the behaviour of the Stokes constants and the series
arising from resurgence imply that these q–series are generating functions for the Stokes
constants. This is extremely practical and easy to compute in simple examples. However,
this remains conjectural besides simple examples like the Faddeev quantum dilogarithm [75].
For knots these Stokes constants are then conjectured to coincide with a particular value
of the 3d–index of a knot. This carries its own definition from the combinatorial data of a
triangulation. It would be interesting if the definition could be extended to include the Stokes
constants coming from closed three–manifolds and the full set of Stokes constants studied
in [70]. I include this conjectural computation for half surgery on the figure eight knot.
As far as I know, this is the first closed hyperbolic three–manifold whose Stokes constants
associated to quantum SL2(C) Chern–Simons invariants have been computed. We close the
introduction with a picture of the absolute value of the resummation associated to the WRT
invariant of 41(1, 2). In fact, the plot is of its cocycle from Theorem 8, which agrees with the
resummation to all computable accuracy, which is much more than the naked eye can see.

τ

|Z0(q̃)j(τ ;S)−1Z−3(q)−1SI(q)
−1|

1

1

2
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Outline

The first part gives background in the topology and geometry of three–manifolds. It also
includes an introduction to quantum invariants of three–manifolds with a focus of sl2 invari-
ants.

The part starts by defining knots and their diagrams. Examples, notation and equivalences
between diagrams (Reidemeister moves) is discussed along with a definition of linking matrix.
A description of some of the algebraic structures associated to knots are then discussed, which
will be used later in defining quantum invariants. In particular the braid groups, Alexander’s
theorem (that all links come from braid closure) and Markov’s equivalence theorem are given.
Then the construction of three–manifolds via gluing is discussed explaining that all three–
manifolds arise from gluing handlebodies or from surgery on links. Then Kirby’s calculus
used from describing when two manifolds obtained from surgery of a link are the same is
described. Then the fundamental group of link complements is calculated and also their
representations, which give rise to an algebraic curve associated to knots called the A–
polynomial.

Next a thorough description of ideal triangulations is given. This gives the basic computa-
tional tools for hyperbolic geometry in three–dimensions. Firstly, topological considerations
are given. Then we describe an algorithm that can be used to triangulate any knot com-
plement. Next a brief description of the geometry of three–manifolds following Thurston’s
program of geometrisation, with the inclusion of the rigidity theorem for complete hyperbolic
structures. The geometric structures of ideal tetrahedra are then discussed including their
moduli, symmetries and volumes. Then Thurston’s gluing equations are discussed, which
gives a way to construct hyperbolic structures from ideal triangulations. The volume of the
figure eight knot complement is given as a full example.

Then the study of the geometry of three–manifolds is taken up in full. Firstly, the com-
binatorial data of Thurston’s gluing equations are considered and put into matrices called
the Neumann–Zagier matrices. The theorem that these are half symplectic is quoted and
the example of their computation for the figure eight knot is given. Then computer com-
putations for some other simple knots is also given. Then Pachner moves are discussed and
the various equivalences between Neumann–Zagier data. Then less combinatorial things are
considered as we investigate the Chern–Simons functional, which requires a discussion on
connections on three–manifolds. Then to understand this more computationally we go on
to the Bloch group, which gives an algebraic way to consider triangulations and relates to
algebraic K–theory. Various examples of explicit elements are constructed including in Neu-
mann’s description of the extended Bloch group. Next, using the Bloch group, a description
of volumes and the Chern–Simons invariant is given and computations included for some
simple closed manifolds and knots.

The next section discusses quantum invariants. A historical description of the Alexander
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polynomial until the discovery of the Jones polynomial is given. Then a vague discussion
of Witten’s physical theory is used to outline a hopeful mathematical theory extending the
Jones polynomial to a much larger set of invariants. Then the coloured Jones polynomial
will be defined by representations of quantum sl2 with emphasis given on explicit formulae
that can be used to compute. Various basic properties will be shown such as framing shifts
and the computation of the coloured Jones polynomial of the figure eight knot will be given.
Then the structural properties observed by Habiro will be discussed including the cyclotomic
expansion and formulae for twist knots will be given. Then the recursions for the coloured
Jones polynomial or Â–polynomial of a knot will be discussed and given for the figure eight
knot along with a brief discussion of the AJ conjecture relating this to the A–polynomial.
With all that, we can then define the WRT invariants of closed manifolds via surgery using
the coloured Jones polynomials. We give examples for surgery on twist knots. Then we
discuss operators in TQFT and use this to justify the construction of modules associated to
links in closed three–manifolds. We then show that while these modules are not invariants,
their span is. This then specialises to the proof that the WRT invariant is unchanged under
Kirby moves. We close with some questions related to this seemingly new vector space
associated to closed three–manifolds.

While the previous section describes (with the addition of some ideas of Witten) the mathe-
matical theory and construction of invariants, this section gives the semiclassical story, which
while clear from the physical perspective, is not so from the mathematical. The justifica-
tion of the expectations from physics using infinite dimensional integrals is initially given
along with Witten’s asymptotic expansion conjecture, which relates the asymptotics of the
WRT invariant at exp(2πi/N) for N ∈ Z to the values of the Chern–Simons invariant for
SU(2) connections. An example is discussed and some pictures given, which give some vague
feeling for these conjectures. Next Kashaev’s volume conjecture on the asymptotics of knot
invariants is discussed, which takes the story from SU(2) to SL2(C). Then the Chen–Yang
volume conjecture, which discusses the asymptotics of WRT invariants at other roots of
unity. Then Vassilev invariants are discussed and the Melvin–Morton–Rozansky conjecture
(Bar Natan–Garoufalidis theorem). Then after discussing the trivial connection, we move to
the non–abelian connections and in particular the geometric. We describe the conjectured
invariants defined by Dimofte–Garoufalidis and discuss their relation to the asymptotics of
the Kashaev invariant. We close the part discussing the analogous series for closed manifolds,
which were conjectured by Gang–Romo–Yamazaki.

The second part takes up the study of asymptotic series and starts by considering numerical
methods. Then it considers some relations to differential equations and resummation. We
then discuss the asymptotics of q–hypergeometric functions and particular depth is given to
the Pochhammer symbol.

First extrapolation methods are discussed. Some brief recollections on asymptotics is given
defining the o,O notation and the notion of asymptotic series given. Next the Richardson–
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Zagier methods are discussed and compared. Variants on these methods are given, illustrat-
ing how to numerically find the asymptotic behaviour of sequences. Then a new variant that
can be used to detect oscillating asymptotics is given and applied in the example of the Airy
function.

Then we explore divergent series. Firstly, we describe linear differential equations, describing
them as modules of the Weyl algebra. Then their Wronskians and companion matrices are
given with a description of constants. The Apéry numbers are used to describe hypergeomet-
ric sums. Next the Frobenius algorithm for finding a basis of solutions to linear differential
equations is given and a discussion on divergent series and exponential singularities is given.
The exponential integral is used as an example of these methods. Secondly, we consider
optimal truncation of divergent series. This is discussed in the more classical set up and
then using the framework of smooth optimal truncation we discuss the methods of refining
the truncation. Thirdly, we describe Padé approximation. The extension of Taylor series is
discussed. Then using Gauss’s hypergeometric function 2F1 and his continued fraction we
give the example of the Padé approximation of the logarithm. Finally, we describe Borel
resummation. This involves a discussion of the Laplace transform and Watson’s lemma is
given. This is applied to the exponential integral example. Then the singularities in Borel
plane and their leading to Stokes discontinuities is described and the Stokes matrix of the
exponential integral is given.

The study then turns to q–hypergeometric functions. To start, we go through various meth-
ods that can be used to study asymptotics of series such as Euler–Maclaurin formula, Poisson
summation, Abel–Plana summation and Laplace’s method for the asymptotic of exponential
integrals. Next, the dilogarithm is discussed. More generally, polylogarithms are intro-
duced and the various identities satisfied by the dilogarithm are given. Next, we apply the
methods of the previous sections to the Pochhammer symbol. To do this, we use a lemma
for the logarithm of the Pochhammer symbol. The first version of the asymptotics is for
generic parameters and the proof from Euler–Maclaurin is given. This is then used to de-
scribe the asymptotics of the Pochhammer with a Möbius transformation. This involves
some kind of cyclic dilogarithm. Then applying Abel–Plana, we get an integral formula
for the Pochhammer symbol, which will be crucial for quantum modularity later. Again the
Möbius transformed version is given. Then using the integral formula, the asymptotics in the
non–generic case is proved, which while clear from previous work has seemingly an explicit
formula of which seemingly isn’t given in previous literature. A corollary is a computation
of the asymptotics of the η function. This is also considered for the Möbius transformed
versions. This gives a formula for the multiplier system of the η function.

The next section turns to the study of q–hypergeometric functions as they approach roots
of unity. Firstly, the general behaviour of such asymptotics is discussed with important
emphasis given on number theoretic aspects. Next, the behaviour of the Borel transforms
is described and the asymptotics of the coefficients of such series. The first examples are
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then given by simple Nahm sums. The Rogers–Ramanujan functions are discussed in this
perspective. Then a similar Nahm sum is given and discussed in detail as q → 1. Then the
behaviour as q tends to other roots of unity is given. Next, we turn to simple knots and
describe the behaviour of the trefoil and figure eight knot. The figure eight knot includes a
discussion on the missing q–series that was described in the introduction and discusses its
asymptotics. Next, we turn to a closed hyperbolic three–manifold, half surgery on the figure
eight knot. The asymptotics of the WRT invariant and Ẑ invariant are discussed along with
the behaviour of the various asymptotic series.

The third part concerns q–difference equations. These will provide some of the algebraic
structures underlying the theory.

We start by defining linear q–difference equations in parallel to the discussion on differential
equations. Wronskians and companion matrices are discussed and also the constants, which
turn out to be elliptic functions. Then duals of various modules are discussed, which are
implicit in the quadratic relations used in the proofs of quantum modularity. Next, the
Pochhammer symbol and the θ–functions are discussed. Some of the most important iden-
tities for q–series manipulations are given in the infinite form of the q–binomial theorem.
This is used to give a short proof of the Jacobi triple product identity for the θ–function.
Then the asymptotics of the Pochhammer symbol are considered and the analogous results
for these functions at roots of unity are given.

Then we describe the Frobenius method for solving q–difference equations as q–series or
when q is close to 0. This involves describing the Frobenius Ansatz and a discussion on
conventions, which arise from the fact constants are elliptic functions. An example from the
figure eight knot is considered. The algorithm can produce divergent q–series and so q–Borel
resummation is discussed. Then the theorem proving the existence of bases of solutions is
given for q–difference equations. A brief discussion of monodromy is then given. We close
with a small discussion on proving q–series identities.

Next, we solve q–difference equations when q ∼ 1. This involves the WKB Ansatz. Firstly,
we solve with general parameter, which involves towers of differential equations. Next we
consider we the parameter is also near 1, which involves simple linear algebra. Secondly, we
discuss the Habiro ring. This gives a ring that potential solutions to q–difference equations
can live. The various rigidity results are given and the Kontsevich–Zagier function is studied
as an example. Thirdly, we describe new types of functions that behave in a similar way
to elements of the Habiro ring. These led to different kinds of solutions to q–difference
equations that are homogeneous while the Habiro ring is naturally inhomogeneous. Finally,
simple identities for elements of the Habiro ring are discussed that are crucial for quantum
modularity of elements of the Habiro ring.

Next, we study q–hypergeometric functions and their q–difference equations. Starting with
rank one Nahm sums, we consider their difference equations. We then prove various duality
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results for these sums. Using these we discuss the various identities that these imply between
functions. Then we discuss various equalities between Nahm sums related to the equivalences
between Neumann–Zagier matrices. Next we turn to a discussion on deformations of q–
hypergeometric functions. Then deformations of the Rogers–Ramanujan identities are given
in great detail.

Then we turn to knots. The descendant Kashaev is defined and a discussion of the various
associated q–difference equations is given. We discuss solutions at roots of unity. Moreover,
the missing q–series is put into this framework. The we go on to holomorphic blocks. These
are q–series satisfying the Â–polynomial. These satisfy a submodule of the full module and
this is then used to introduce the two variable series of Gukov–Manolescu. Next, a brief
discussion on dualities associated to knots and lack of in come cases.

Next, we turn to closed manifolds. The Ẑ invariant is introduced from the two variable
series by applying a Laplace transform. Then half surgery on the figure eight is considered
in detail and its WRT invariant is studied. Then the Ẑ invariant is shown to come in a
family satisfying the same q–difference equations and a q–hypergeometric formula is given
that is related to the formula for the WRT invariant. We close by giving the self duality
explicitly in this example.

The fourth part involves modularity. We start from classical theory and end in the quantum.

Classical elliptic modular forms are discussed first. The modular group and its various ac-
tions are discussed. Modular forms are defined and their finite dimensionality is discussed.
Next, the Eisenstein series are defined. The expansion of the infinite Pochhammer symbol
is given and related to the Eisenstein series. Then an efficient computation of the q–series
expansions of the Eisenstein series is given. This is most helpful for odd Eisenstein series.
The transformation of the second Eisenstein series is also given. Then we move to the in-
finite Pochhammer symbol or the Dedekind η–function. Its multiplier system is discussed
and Ramanujan’s ∆ function is also discussed. Then the θ–function is discussed and its
modularity is proved with Poisson summation. Next, vector–valued modular forms are stud-
ied and the θ–function is given as a simple example. Automorphy factors are defined and
then the Rogers–Ramanujan functions are described in this set up. Then a discussion on
modularity of q–hypergeometric functions is given and Nahm’s conjecture described along
with an analogue for three–manifolds.

Jacobi forms are discussed next. This starts with a discussion on elliptic functions from the
θ–function and the Weierstrass ℘–function. The modularity of the Weierstrass ℘–function
is given. This leads to the definition of Jacobi forms following [56]. The proof that the θ–
function is a Jacobi form is then given again using Poisson summation. Then vector–valued
θ–functions are considered and their modularity given. The construction of modular forms
from a Jacobi form and using the second Eisenstein series to fix quasi–modularity is then
discussed. The deformation of the Rogers–Ramanujan functions is shown to be a Jacobi
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form. Deformation of q–hypergeometric modular forms is then discussed along with q–Borel
resummation of functions expected to be modular.

After this, we leave the more classical aspects and go to mock modular forms. Asymptotics
of Ramanujan’s original examples are considered. Then Appell–Lerch sums are studied and
their asymptotics. The modular properties of these sums are then given and the description
of the Appell–Lerch sums as the q–Borel resummation. Next, the inhomogeneity of the
q–difference equations of mock modular forms is discussed and we give a brief method of
constructing the O(1) series of Ramanujan from nothing but the inhomogeneous q–difference
equation. We close the discussion on a conjectural new order seven mock modular form that
arose in studies with Matthias Storzer.

Then, we finally come to quantum modular forms. We start by describing modular forms at
roots of unity. We extend the Eisenstein series to h∪Q∪h. Then, we consider the multiplier
system of the η function and its modularity properties. Using this we give an extension of
Ramanujan’s ∆ function to h∪Q∪h and describe its automorphy factor. Then, we consider
the Rogers–Ramanujan functions at roots of unity. After this, we consider the original
description of quantum modular forms and the relation to improved analyticity properties.
Using this, we give a description for q–series to be quantum modular along the same lines and
prove this for rank one Nahm sums. Then, we turn to the study of the WRT invariant of half
surgery on the figure eight knot. We describe how the various conjectures on asymptotics
appear and how modularity similar to the original observations of Zagier for the Kashaev
invariant also holds here. Importantly, we describe how Witten’s asymptotic expansion
conjecture and Chen–Yang’s volume conjecture are unified by quantum modularity. Then,
we prove this form of quantum modularity for this example. We then go on to refine this
form of quantum modularity along the lines of Garoufalidis and Zagier [86].

The refinements of quantum modularity lead to discussions of analytic cocycles. We describe
non–commutative first group cohomology and how this is used to describe SL2(Z) cocycles
valued in analytic functions. Various examples are given and some rigidity results are also
discussed. Then we turn to some kind of Jacobi version that incorporates q–difference
equations. Rigidity results are also given in this context. Using these analytic cocycles we
give the working definition of quantum modular forms for this thesis following roughly the
ideas of [201, 202]. Similarly, Jacobi versions are also described compatibly with the modular
q–holonomic modules of [82]. Then, we go through the various theorems on the quantum
modularity. First, for rank one Nahm sums, then the figure eight knot, and then for half
surgery on the figure eight knot.

Quantum modularity of the Pochhammer symbol is then studied in detail. The main tool is
the Faddeev quantum dilogarithm and we start with its definition. Then, we go onto to the
difference equations it satisfies and its modular properties. Then the analytic properties of
the quantum dilogarithm are given and the asymptotic behaviour. Then the various formulae
for the dilogarithm are described. The symmetry is given and then finally the descriptions of
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the Fourier transforms are given. These are the analogues of the q–binomial theorem. Next,
we briefly discuss the cocycle of the Pochhammer symbol related to the modular quantum
dilogarithm of [76]. The dilogarithm is then discussed at rational numbers, which uses the
cyclic dilogarithm.

State integrals are the main technical tool for proving quantum modularity. These are
discussed in the last part. These are introduced with comparisons to Gaussian integrals and
then the Mordell integral.

Firstly, we describe how to factorise state integrals at rationals. This relies on the fundamen-
tal lemma in [72]. This is extended to any dimension and the Mordell integral is considered
at rationals. Then, we go onto to factorise the state integrals at rationals of the rank one
Nahm sums, the trefoil knot, the figure eight, and then a toy example used to illustrate the
final example of half surgery on the figure eight knot.

Then, we go onto to show how to factorise state integrals in terms of q–series. This is
illustrated in terms of a proof of the analogue of the q–binomial theorem. We then discuss
untrapping and run parallel computations between q–series and state integrals. Then we
go onto factorise the state integrals associated to rank one Nahm sums, the trefoil and the
figure eight knot. We use the figure eight knot, as an example of computing q–difference
equations associated to state integrals. Then, we go onto explain how to factorise the state
integrals associated to half surgery on the figure eight knot.

The final section discusses various conjectures relating to Borel resummation of the asymp-
totic series that come from state integrals and q–hypergeometric functions. This starts with
computing the quantum modular properties with Borel resummation of a Nahm sum and
the Ẑ series associated to half surgery on the figure eight knot. Next, we describe the general
conjectures related to resurgence and the Stokes phenomenon coming from [69, 68]. Along
with the quantum modularity, these conjectures allow conjectural computation of all of the
Stokes constants. This is illustrated in the two examples and importantly the example of
half surgery on the figure eight knot.

Some questions for the future are then given. We close with a large collection of mostly
PARI/GP [20] programs of various clarity associated to the various sections of the thesis.
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Notation and terminology
This section contains some notation but maybe not all. Use it as a guide but not as gospel.
The most basic and important notation that will be used through the entire thesis is

e(x) = exp(2πix) , q = e(τ) , q̃ = e(−1/τ) , qa/c = e(aτ/c) .

We will also use the notation

q̃γ = e
(aτ + b

cτ + d

)
, τ̃γ = − |c|

c2τ + cd
.

Of similar importance are

(a; q)n =
n−1∏
j=0

(1− aqj) ,
(
n

k

)
q

=
(q; q)n

(q; q)k(q; q)n−k
.

We take Z,Q,R,C as the integers, the rationals, the reals and the complex numbers as
usual. For all but the complex numbers we take K≤a and similar combinations to mean the
elements less than or equal to a e.g. Z≤0 is the non–positive integers. If K is a field then
K(x1, . . . , xN) is the field of rational functions in xi over K. The sets of matrices that appear
are

• SLn(K) the special linear group of matrices with determinant 1.

• PSLn(K) the projective special linear group consisting of matrices with determinant 1
over K modulo the centre.

• Sp2N(K) the group of symplectic matrices over K, that is the group of matrices pre-
serving the standard symplectic form on K2N .

• MN×M(K) the N ×M matrices over K.

• GLN(K) the general linear group of invertible N ×N matrices over K.

Besides this, the notation in order of first appearance is now listed.

• Sn the n-sphere.

• 31, 41, 51, 52, · · · , where ab is the b-th knot with some purely historical numbering with
at least a crossings when expressed as a diagram.

• lk(L1, L2) the linking number between two components L1, L2 of a link L. For a framed
link lk(L), is the linking matrix.
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• Bn braid group on n strands, ιn : Bn → Bn+1 the canonical embedding.

• σi ∈ Bn the generators of the braid group givin one half twist.

• π1 is the fundamental group.

• GL the fundamental group of the complement of the link L.

• AK an A–polynomial of the knot K.

• Hn hyperbolic n–space.

• Isom the group of isometries.

• ∆z ideal tetrahedron with shape parameter z ∈ C.

• z′ = (1− z)−1 and z′′ = 1− z−1.

• Λ(x) = −
∫ x

0
log |2 sin t|dt is Lobachevsky’s function.

• Vol(M) is the volume of M .

• D(z) = =(Li2(z)) + arg(1− z) log |z| the Bloch–Wigner dilogarithm.

• Li2(z) = −
∫ z

0
log(1− w)dw

w
the dilogarithm.

• Ωk(M,V ) the space of k–forms on M valued in V .

• GP the gauge group of a principle bundle P , i.e. the group of automorphisms of P .

• CS the Chern–Simons functional.

• Tr the trace of a matrix and a representative of the Killing form.

• FA the curvature of A.

• R(M,G) the representation variety of M in G, i.e. representations of the fundamental
group of M into G up to conjugation.

• c(x, y) = [x]− [y] + [y/x]− [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)].

• F five term relations.

• B(K) the Bloch group of K.

• lµ.. the roots of unity and lµ.. K the roots of unity in K.
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• Ĉ the Riemann–surface of (log(z), log(1− z))

• `(z; p, q) = (log(z) + pπi,− log(1− z) + qπi,− log(z) + log(1− z)− pπi− qπi)

• B̂(K) the extended Bloch group of K.

• R(z; p, q) = 1
2

log(z) log(1− z)−
∫ z

0
log(1− t)dt

t
+ πi

2
(p log(1− z) + q log(z))− π2

6

• ∆L(x) the Alexander polynomial of a link L in variable x.

• J2(L; q) the Jones polynomial of L in variable q.

• Z(M ; ~) the partition function of Chern–Simons theory.

• R : V ⊗W ∼= W ⊗ V a quantum R matrix.

• (R, µ,E,Eµ, F, Fµ−1) the local pieces associated to knots for quantum invariants.

• J̃N(K; q) the coloured Jones polynomials of a knot.

• (qN/2 − q−N/2)JN(K; q) = (q1/2 − q−1/2)J̃N(K; q).

• Ck(K; q) the cyclotomic coefficients of a knot K.

• γk,N the change of basis taking the cyclotomic coefficients and the coloured Jones
polynomial.

• σL the signature of the linking matrix, i.e. the number of positive eigenvalues minus
the negatives.

• X(M ; q) the WRT invariant and the generators of the WRT module.

• K(a, b) the a/b–Dehn surgery on the knot K.

• Z a TQFT functor.

• Cobn+1 the category of cobordisms.

• Vect the category of vector spaces.

• ΥM the WRT module.

• VC complexified volume or Chern–Simons invariant.

• δ the one–loop invariant.

• 〈L〉N the Kashaev invariant.
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• Bn the Bernoulli numbers.

• Lik(z) the k-th polylogarithm.

• ψ~ asymptotics of the quantum dilogarithm.

• S the loop expansions of the formal series.

• Π the propagator.

• Γ vertex weights.

• Φ asymptotic series.

• ∼, o, O asymptotic notations.

• n multiplication by n map of sequence in n.

• ∆ the difference of a sequence.

• extrapk the k-th order extrapolation operator.

• S(s, k) the Stirling numbers of the second kind.

• Dx = x ∂
∂x
.

• Eb(x) =
∫∞

0
t|x|−b exp(−t|x|) dt

t− x
|x|
.

• f [m/n](z) the Padé approximate of f with numerator of degree m and denominator
of degree n.

• B1 the Borel transform of weight one.

• L the Laplace transform of weight one.

• Bn(x) the Bernoulli polynomial.

• f (n) the n–th derivative of f .

• f̂ the Fourier transform of f .

• Analytic continuation of ζ(s) =
∑∞

k=1 k
−s.

• ∆(m,x; q) and asymptotic cyclic dilogarithm.

• ψ(τ,m, z,M) the integral expression for the Pochhammer symbol.
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• Φa/c(~) the asymptotics of a q–hypergeometric function at e(a/c).

• Dn universal denominators.

• λγ the tweaking factor.

• fA,m,n(q) a Nahm sum.

• M a matrix of Stokes constants near the origin.

• denom(x), numer(x) the denominator and numerator of x ∈ Q respectfully.

• Ẑ the expected invariant predicted for example in [92].

• σx a generator of the q–Weyl algebra or the operator (σxf)(x) = f(qx).

• W (f (1), · · · , f (N)) the Wronskian.

• M∨ the dual of M in the usual sense.

• M∧ the dual of M induced by the map q 7→ q−1.

• θ(x; q) =
∑

k∈Z(−1)kqk(k+1)/2xk.

• ε(q) =
√
−i∏ord(q)−1

`=1

(
1− q`

) 1
2
− `

ord(q) the multiplier system of the η function.

• ord(q) the smallest positive number n such that qn = 1.

•

θκ(x; q) =

{ θ(xκ; qκ) if κ > 0 ,
1 if κ = 0 ,

θ(qκxκ; q−κ)−1 if κ > 0 ,

• Bκ the q–Borel transform of weight κ.

• Lκ the q–Laplace transform of weight κ.

• L(t, λ; q) the Appell–Lerch sum.

• M monodromy matrix.

• Ẑ[q] the Habiro ring.

• GA,B,r a generalised Nahm sum.

• the Descendant coloured Jones polynomial JN,m with J0,m the descendant Kashaev
invariant.
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• Gn(q) the n-th Eisenstein series with constant ζ(1− n)/2.

• ΞK and FK the two variable series associated to knots symmetrised or not.

• |kγ the slash action of weight k where f |kγ(τ) = (cτ + d)−kf
(
aτ+b
cτ+d

)
• E2k(q) = 2G2k(q)/ζ(1− 2k)

• η(q) = q1/24(q; q)∞ the Dedekind η–function.

• ϑij(q) classical modular θ–functions.

• j a multiplier system.

• ℘ the Weierstrass ℘–function.

• ϑκ vector–valued θ–function.

• Ω,Ξ analytic cocycles.

• Cγ the cut plane associated to γ ∈ SL2(Z).

• Φb(x) the Faddeev quantum dilogarithm in notation of [8].

• Φγ(z; τ) cocycle of the Pochhammer symbol.

• Cyclic dilogarithm DM(x; q).

• Cτ = i
√
τR the contour used for state integrals

• Sρ,ρ′,k a Stokes constant.

Remark 1. We will consider certain q–hypergeometric sums known to me as Nahm sums.
Recently, I became aware — thanks to remarks of Sergei Gukov — that these sums appeared
earlier under the name fermionic sums [110]. In honour of Werner Nahm’s contribution to
the study of these sums, I will continue to use the name Nahm sums throughout the thesis,
hoping that this leads to no confusion.
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Chapter 1

Combinatorics and geometry of
three–manifolds

By the end of the 19–th century the topological aspects of surfaces were, at some level,
well understood. Three–manifolds were a natural next step. Around the turn of the 19–th
century, Poincaré famously made an initial guess that the homology of three–manifolds would
determine them as for surfaces. None other than Poincaré himself constructed a counter
example to this guess, now know as the Poincaré homology sphere. This led Poincaré to
introduce the fundamental group, which is a non-abelian version of the first homology. This
led to the question, more than a conjecture, of whether a three–manifold having a trivial
fundamental group implies that it was the 3–sphere. This question became know as the
Poincaré conjecture and over the 20–th century many proofs were given and all turned out
to be flawed. The generalisation to dimensions higher than three was in fact done first.
Smale and Freedman showed this is true in the topological category and Milnor showed that
in the smooth category this was no longer true. Donaldson proved that there are infinitely
many smooth structures on R4 but it is still unknown how many smooth structures exist on
the 4–sphere. The first major step towards understanding this in three dimensions, as often
happens in mathematics, was a vast and more detailed generalisation of this conjecture.
This was introduced in the work of Thurston, which gave a picture of the structure of
three–manifolds through geometrisation. Not only did Thurston describe generally how
these structures should arise, but he gave concrete means to calculate them. Ultimately,
Thurston’s vision was proved a century after Poincaré’s question by Perelman.

While we now have a picture of three–manifolds through geometrisation, what a three–
manifold means in practice depends on the person you ask and in what context. Some
will think of this purely abstractly as a space locally the same as R3 with some additional
structure. Others may think of triangulations in terms of tetrahedra, the various combina-
torics of how they can be glued, and which alterations can be made to get back the same
three–manifold. Similarly, some may think of framed link via their diagrams and the various
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alterations one can make to get back the same three–manifold. Each way has its advantages
when thinking about a particular problem. For example, calculating volumes of manifolds is
most easy done with triangulations while proving invariance of some quantum objects can
be most easily tackled using link diagrams.

In this section, I will outline the important results that are needed to define, calculate and
prove invariance of the quantities we will study later. Technical aspects will be avoided and
minimal proofs given. However, most of the results are well know and many have references
to textbooks. Emphasis will be given on the tools needed to compute examples. I will
firstly consider the algebraic aspects of three–manifolds given by link diagrams, braids and
surgery. Then I will go onto study triangulations both topologically and geometrically. Next
I will consider the combinatorics of geometric triangulations via Thurston’s gluing equations
encoded in Neumann–Zagier matrices. Finally, I will discuss geometric invariants and in
particular the Cheeger–Chern–Simons invariant of a flat PSL2(C)–connection. In some sense,
this section covers the classical aspect of the theory before we go onto the quantum aspects
in the next section.

1.1 Knot and link diagrams

A knot is a smooth embedding of the circle into S3 up to isotopy. Some care needs to be
made with the topological aspects as discussed, for example, in [33, 121]. However, we can
simply represent knots combinatorially in a knot diagram. This takes a projection of the
knot onto some S2 that is an embedding away from a finite set of points, where locally we
have a transverse intersection of two arcs of S1. This gives a four–valent graph in S2 and to
each vertex we keep track of which arc was higher in the original embedding into S3. These
vertices are called crossings. This just describes how one would simply draw a knot on a
piece of paper. For example, the simplest non-trivial knot is the trefoil and its knot diagram
is shown in Figure 1.1.

The trivial example is the unknot. This simply embeds S1 with the usual embedding into
a sphere S2 inside S3. It has a knot diagram which is just a circle with no crossings.
Determining whether a knot is the unknot is an extremely difficult question. For a more
complicated illustration of this, see [183, Ch. 1] but we give another example in Figure 1.2
for fun.

We will use knot diagrams to describe knots for most of this thesis. It then becomes important
to understand how different diagrams for the same knot can be related. One can always take
isotopies that introduce finitely many points crossings in the diagram. As one applies one of
these isotopies, there will be a critical point where some crossings come together in the knot
diagram, or new crossings are created. There are three fundamental cases. Firstly, there
are two fundamental ways a crossing can be created (and conversely removed); by an edge
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Figure 1.1: Left handed trefoil knot.

Figure 1.2: Is this the unknot?
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Figure 1.3: The Reidemeister moves.

twisting around itself into a kink, and by two edges coming together creating two crossings.
Finally, if more than two crossings come together this can always be decomposed into multiple
steps where three crossings come together or one of the previous two cases. Then, if three
edges come together, there is a face with three edges that shrinks. Analysing how this can
happen, we find it always reduces to moving an edge under a crossing. All possible relations
between knot diagrams are then combinations of these moves called Reidemeister moves.
This is discussed in more detail in, for example, [33, 121]. These moves are shown in terms
of the diagram in Figure 1.3.

Historically, tables of knots were made in order of the number of crossings. This historical
notation is still somewhat used for simple knots. The notation is of the form ab, where a
is the minimal number of crossings in a knot diagram of the knot, and b indicates1 which
knot of the finite list it is. The minimal number of crossings is often simply referred to as
the number of crossings of the knot. In Figure 1.4, we give a table of knots up to seven
crossings up to mirror images. A knot is called amphichiral if it is the same as its mirror
image. The only examples of amphichiral knots on the table in Figure 1.4 are 41 and 63.
So all others differ from their mirror image. The number of knots with a given number of
crossings increases rapidly, which is an obvious defect of this historical notation. The table
of the numbers up to fifteen can be found in [121, Table. 1.2] and is reproduced here.

Number of crossings 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of knots 1 1 2 3 7 21 49 165 552 2176 9988 46972 253293

A natural and important generalisation of a knot is to a link. This is an embedding of a
compact one-manifold in S3. All compact one-manifolds are disjoint unions of circles S1.
We can generalise the previous discussion to define link diagrams. Similarly, link diagrams
will be related by the Reidemeister moves from Figure 1.3. An example of a link is given in
Figure 1.5. If a link is an embedding of tni=1S

1 then we call it an n-component link. The
components of the link are the restrictions of the embeddings to one of the copies of S1.

1b is not canonical and purely historical.
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Figure 1.4: Table of knots up to seven crossings.

Figure 1.5: The Borromean rings. All components are unknotted and no two components
are linked.
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Figure 1.6: Positive and negative crossings and an example of linking number.

Often we will be interested in oriented links. For the diagram, this means putting an arrow
on an arc in each component. There are at most two orientations of each component. For
example, the two orientations of the trefoil are equivalent. Using orientations we can define
positive and negative crossings as shown in Figure 1.6 Finally, there is a natural measure
of how linked two components of a link are given in the following definition, which can
be checked to be well defined under the equivalence induced by the Reidemeister moves in
Figure 1.3.

Definition 1 (Linking number). [121, Def. 1.4] If L is an oriented link with components
L1, · · · , Ln then the linking number lk(Li, Lj) between Li and Lj is defined to be the number
of positive crossings between the two components minus the number of negative crossings
between the two components in a link diagram.

An example of the computation of the linking number between the two components of a
two component link is given in Figure 1.6. Choosing an orientation one can check that the
linking number between any two components of the Borromean rings in Figure 1.5 is zero.

Knots and links can be described entirely in terms of algebra. This will be described in the
next section.

1.2 Braids and the algebraic structures of links
Braid groups are algebraic objects that can be used to decompose knots and links into some
simple building blocks corresponding to crossings.

Definition 2 (Braid groups). The group

Bn =

〈
σ1, . . . , σn−1 :

if |i− j| > 1, σiσj = σjσj
if i = 1, . . . , n− 2 σiσi+1σi = σi+1σiσi+1

〉
, (1.1)
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Figure 1.7: A braid on four strands.

is called the braid group on n strands.

The braid group on n strands can be described visually as the group generated by isotopty
classes of embeddings of arcs connecting n points on a base line to n to the same points
on a translation of the base line. This can be made into a braid diagram in the same way
as for knots. For example, a typical element looks something like that shown in Figure 1.7
Composition is then done by stacking braids on top of each other as shown in Figure 1.8
Now the elements σi are given by the diagrams in Figure 1.9, which clearly generate the
group. With these pictorial representations, the relations become clear and are describe in
figures 1.10 and 1.11. We can include braid groups in each other by

Figure 1.8: Composition of braid diagrams.
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Figure 1.9: Generators of the braid group from crossings.

Figure 1.10: Inverse in the braid group corresponds to Reidemeister II in Figure 1.3.

Figure 1.11: Relations in the braid group corresponds to Reidemeister III in Figure 1.3. The
top left crossing is passed under.
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Figure 1.12: Embeddings of the braid groups in each other.

Figure 1.13: The closure of a braid.

ιn : Bn → Bn+1 s.t. ι(σi) = σi . (1.2)

This is given diagrammatically in Figure 1.12. To any braid we can construct a link by
taking its closure. This involves connecting the points on the base lines above the braid.
This is pictured in a link diagram in Figure 1.13. Not only does this give a link but an
oriented link. Now a natural question is whether the links that arise from braids give rise to
all links. This is the content of the next theorem due to Alexander [1].

Theorem A–1. [109, Thm. 2.3]. Every oriented link in S3 is isotopic to a braid closure.

This shows that we have a surjection from the set of braids onto the set of links. The question
is then of course what equivalence relation this surjection gives i.e. how are braids in the
preimage of a link related. To describe this equivalence relation, we need to understand how
the closure can swap a braid element from the top to the bottom, and how Reidemeister I
in Figure 1.3 can be realised with braids.
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Figure 1.14: The first Markov move implied by isotoping along the closure.

We can construct a relation by taking the composition of two braid elements, β1, β2, given
by β1β2 as seen in Figure 1.14. Then, taking the closure, we see that we can isotope β1

along the closure to be below β2. Therefore, we see that β1β2 and β2β1 give the same link.
This implies that conjugation preserves the link. Therefore, under the equivalence relation
coming from Theorem 1 we have

β1 ∼ β2β1β
−1
2 . (1.3)

A second relation can be constructed by understanding how braids interact with Reidemeister
I in Figure 1.3. This can be done by considering a braid β ∈ Bn and taking its embedding
into the braid group with an extra strand, as shown in Figure 1.12, and composing with
σ±n . This is depicted in Figure 1.15 and is the equivalence is then implied by Reidemeister
I. Therefore, we have

β ∼ ιn(β)σ±n . (1.4)

These relations were introduced by Markov who proved the following Theorem [128].

Theorem A–2. [109, Thm. 2.3] The closure of two braids give isotopic links if and only if
they are related by equivalences generated by equation (1.3) and equation (1.4).

We can use this theorem to construct invariants of links. In particular, we must construct a
function from the braid group that is invariant under the two equivalences in equation (1.3)
and equation (1.4). Already, if we have some kind of representation of the braid group,
taking some kind of trace should give invariance under equation (1.3). We will return to this
is Section 2.3.



1.3. HOW TO GLUE THREE–MANIFOLDS 57

Figure 1.15: The second Markov move implied by Reidemeister I in Figure 1.3.

Figure 1.16: Genus two handlebody.

1.3 How to glue three–manifolds

Gluing topological manifolds with boundary is done by homeomorphisms of the boundaries
to be glued. With additional structures one must be careful in general, however, in dimension
3 these issues cause us no problem due to work of Moise. The gluing will only depend on the
isotopy class of the diffeomorphism and therefore elements of the mapping class group. The
boundary of a three–manifold is a surface and therefore we find that we need to understand
mapping class groups of surfaces. These groups are somewhat understood but aspects remain
very mysterious. However mysterious, elements of the mapping class group can be used to
give rise to all three–manifolds. A genus g handlebody is the closure of a small neighbourhood
of a graph of genus g embedded in R3. Alternatively, take a standard embedding of a genus
g surface, which splits R3 into two regions and the handlebody is the bounded region and
the surface. For a graphical representation see Figure 1.16. Then we have the following
theorem.

Theorem A–3. [121, Lem. 12.12][173, Thm. 1.1] Every three–manifold can be obtained by
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Figure 1.17: Heegaard splitting from a triangulation in a tetrahedron.

gluing two handle bodies together.

Proof. Triangulate the manifold and take the closure of a small neighbourhood of the edges
of the triangulation, which will be a handlebody. Then in each tetrahedron what is left is a
“solid sphere with four boundaries” as depicted in Figure 1.17, which will also glue together
along the faces into a handlebody. The genus of this splitting will be one more than half the
number of tetrahedra.

This splitting is called a Heegaard splitting after its inventor. We will take a different
approach in constructing closed manifolds. Consider a link with n components. Taking
the complement of the link inside S3 gives a manifold with n toroidal boundaries. We can
glue a solid torus into each of these boundaries corresponding to the components of the
link to construct a closed three–manifold. Notice that gluing in a solid torus is completely
determined by where it sends the curve on the boundary that bounds a disk. Choose two dual
curves, mi, `i, generating the first homology of the torus corresponding to the i-th boundary
component such that mi is contained in a ball not containing the whole i-th component of
the link. These curves are given the following names: mi is a meridian, and `i is a longitude.
Then for every component i of the link, we can glue so that the simple curve corresponding
to the class [aimi + bi`i] is identified with the curve on the boundary bounding a disk in
the solid torus. As ai, bi are coprime, as they represent a simple closed curve, this surgery
is determined by the number called the slope ai/bi ∈ Q ∪ {∞}. The way we have defined
mi, the surgery when the slope is infinity simply removes that component of the link. For
example, infinite surgery on all components of a link will return S3. This procedure is called
Dehn surgery. The following theorem is due to Lickorish [120] and Wallace [192].

Theorem A–4. [121, Thm. 12.13][173, Thm. 2.1] Every closed three–manifold is obtained
by integral Dehn surgery on links in S3.
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Figure 1.18: Blackboard framing.

Figure 1.19: Example of a ribbon graph giving a framed trefoil.

Therefore, we can completely describe closed three–manifolds by a link with peripheral
curves, and an integer for each component. A convenient way to choose the curves is the so
called blackboard framing. This takes a link diagram and chooses `i to be the curve given
by a parallel to the i-th component, which is always say on the right of the link of the i-th
component in a small neighbourhood of the link. Then if the i-th component is framed
by an integer ai we take a portion of the i-th component and its parallel and twist them
ai times. To recover ai, one can take the linking number, defined in definition 1, between
the component and its parallel. There is a canonical 0–framing such that each component
has 0–linking number between the two parallel curves. An example of blackboard framing
is given in Figure 1.18. This is conveniently described by ribbon graphs, which are embed-
dings of [0, 1] × S1 into S3 as opposed to S1. Their projections keep track of the framing
and can therefore be used to describe closed three–manifolds. These projections are often
called framed link diagrams. For an example of a ribbon graph on the trefoil see Figure 1.19.
The main difference is that Reidemeister I moves now alter the framing, as can be seen in
Figure 1.20.
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Figure 1.20: Reidemeister I does not hold for framed links or ribbon graphs.

Figure 1.21: Lens spaces as a framed link diagram.

Example 1 (Lens spaces). [173, Thm. 2.3] Consider the continued fraction

p

q
= x1 −

1

x2 −
1

· · · − 1

xn

(1.5)

Then the lens space L(p, q) is given by the framed link diagram in Figure 1.21.

With oriented framed links we have a natural notion of self linking given by the framing.
Using this we have the following definition.

Definition 3 (Linking matrix). [121, Sec. 13] Let L be a framed link with components
L1, . . . , Ln and framing of component Li given by ai. Then define the linking matrix

lk(L) =


a1 lk(L1, L2) · · · lk(L1, Ln)

lk(L2, L1) a2 · · · lk(L2, Ln)
: : · · · :

lk(Ln, L1) lk(Ln, L2) · · · an

 . (1.6)

The linking matrix stores various information about the manifold obtained by surgery. For
example, the first Betti number of the manifold obtained by surgery is given by the dimension
of the kernel of the matrix.

As usual, it is important to understand the relations between various framed link diagrams
giving the same manifold. This is described in the next section.
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Figure 1.22: The Kirby move.

1.4 A calculus for the topology of three-manifolds

Treating three–manifolds given by a frame link diagram as the boundary of a four manifold,
Kirby [111] studied the effect of various operations on four manifolds, which preserve the
three–manifold at the boundary. Although these operations preserve the three–manifold,
they alter the framed link diagram. This of course gives equivalence relations between
different framed link diagrams that give the same three–manifold. Kirby’s original version
had some more global aspects but this was made entirely local by Fenn–Rourke [60]. Moves
of this type are called Kirby moves. The most important Kirby moves are given by adding or
removing an unknotted component with framing ±1. If the unknotted component is linked
around some other components which intersect a disk bounded by the unknotted component,
then the arcs crossing the disk a twisted around once clockwise or anticlockwise depending
on the sign. If the component bounds a disk not intersection any other component of the
link, this is called a special Kirby move. The Kirby move is shown in Figure 1.22. Notice
that it changes the framing of a component by the square of the linking number. This can
be seen by considering Figure 1.23. It is not too hard to see that these moves give the same
three–manifolds. However, all isomorphic three–manifolds can be related by them. This is
the content of the following theorem, which in its original form is due to Kirby.

Theorem A–5. [167, Thm. 6.2, 6.3][173, Thm. 3.1] If M1 and M2 are closed three–
manifolds associated to framed links L1 and L2 then they are homeomorphic if and only if
L1 and L2 are related by (±1)–Kirby moves.

As discussed for links, we can use this theorem to construct invariants of closed three–
manifolds. To do this we must construct a function from the set of framed links that
is invariant under the Kirby moves. This then implies that it is a topological invariant.
Examples of such invariants will be given in Section 2.4.
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Figure 1.23: The affect of the Kirby move on the framing.

1.5 Representing fundamental groups and A–polynomial
With a surgery description of three–manifolds in terms of links in S3, we see that to under-
stand the fundamental group of a three–manifold we need to understand the fundamental
group of a link complement. Doing this we can use the Seifert–Van Kampen theorem to de-
scribe the fundamental group of all three–manifolds. Given a link diagram one can explicitly
compute a presentation for the fundamental group. This is called theWirtinger presentation.
Given an oriented link L it is described as follows:

• for every arc in the link take a generator gi, which correspond to an arc coming from a
base point high above the projection as wrapping once around the component following
the right hand rule,

• at every crossing take the rj relations given in Figure 1.24,

• and then take
GL = 〈gi : rj〉 . (1.7)

Theorem A–6. [169, Sec. 3, Thm. 2] The Wirtinger presentation is a presentation of the
fundamental group of the link complement i.e.

π1(S3 − L) = GL . (1.8)

There are similar algorithmic presentation from a link diagram such as the Dehn presentation.
Given a manifold SnapPy [43] has algorithms to compute a presentation of the fundamental
group. For example, we can compute a presentation of the fundamental group of the figure
eight knot complement using SnapPy as follows.
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Figure 1.24: Relation for the Wirtinger presentation.

1 In[1]: M=Manifold("4_1")
2 In[2]: M.fundamental_group(simplify_presentation = False)
3 Out [2]:
4 Generators:
5 a,b,c
6 Relators:
7 BabC
8 CaBcA

This says that the fundamental group of S3 − 41 has presentation

〈a, b, c : b−1abc−1, c−1ab−1ca−1〉 . (1.9)

Later we will be very interested in representation of the fundamental group into SL2(C) up
to conjugation. These representations can also be computed by SnapPy [43] in Sage [182].
For example, boundary parabolic representations are computed in Code 2. The output there
indicates that we have a representation defined on the generators by

ρ(a) =

(
2 1
−1 0

)
, ρ(b) =

(
−e 2πi

6 + 2 1
−1 0

)
, ρ(c) =

(
−e 2πi

6 + 2 1

e
2πi
6 e

2πi
6

)
. (1.10)

Also we can see that the boundary curves a−1b and ca−1cb−1ac−1ba−1b are indeed parabolic
i.e. conjugate to ±(1, 1; 0, 1). These representations are related to flat connections and will
be discussed again in Section 1.13. Finally, using these representations into SL2(C) we can
define the A–polynomial of a knot. Let K is a knot with a basis m, ` for the boundary (or
peripheral) curves in S3 − K. Then we can take a map defined almost everywhere locally
ι : Hom(GK , SL2(C)) → C× × C× such that for a representation ρ : GK → SL2(C) we
take an eigenvalue of ρ(m) and an eigenvalue of ρ(`). This map descends to the quotient
Hom(GK , SL2(C))/SL2(C) where the action is given by conjugation.

Definition 4 (A–polynomial). [42] The A–polynomial of the knot K with peripheral curves
m, ` is defined to be the polynomial that defines the variety Imag(ι).
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Of course there is an ambiguity up to multiplication by constants. In fact these polynomials
can be made to have integer coefficients [42, Prop. 2.3]

Example 2. For the trefoil 31 the A–polynomial is

A31(m, `) = (`− 1)(`+m6) , (1.11)

and for the figure eight knot 41 the A–polynomial is

A41(m, `) = (`− 1)(`−1 − (m−4 −m−2 − 2−m2 +m4) + `) . (1.12)

Finally, representations on closed manifolds that come from surgery on links then come
from representations on link complements with some addition conditions at each boundary,
which corresponds to where the disk in the solid torus gets glued after surgery. Therefore,
representaions on closed manifolds correspond to special points on the A–polynomial that
satisfy an additional equation such as ma`b = 1 where a, b ∈ Z are determined by the slope
of the surgery.

1.6 Topological aspects of triangulations
We have described various combinatorial descriptions of three–manifolds using diagrams.
For a more explicitly three dimensional description, we will use triangulations. Firstly, we
need to understand how this works topologically. We want to understand which gluings are
allowed and lead to manifolds. If we have a finite number of triangles and glue all their edges
to another edge we will always find a surface. The only place that the gluing might cause
issues is a vertex. However, going around a vertex we see that we can pass through at most
a finite number of vertices of the triangles, which leads to a picture reminiscent of a pizza as
seen in Figure 1.25. Essentially, it always works here as there is only one connected compact
one dimensional manifold; the circle or one–sphere. If we consider gluing tetrahedra, we find
a more complicated situation. Not only could the gluing go wrong in codimension two, but it
could wrong in codimension three. In codimension two we are considering gluing around an
edge. Locally this is done gluing wedges which reduces to the previous analysis for triangles
as seen in Figure 1.25. Around the vertices, we find a new phenomenon and an obstruction
to gluing. If we remove a neighbourhood of the vertices of a tetrahedron, we find a truncated
tetrahedron as shown in Figure 1.26. This can always be glued, now along the hexagonal
faces of the truncated tetrahedra, and we find a manifold with boundary coming from the
truncation. The little triangles of the truncated tetrahedra, triangulate this boundary. If
the boundary component is a sphere, then one can glue in a ball, which would imply that
we could have glued using the full tetrahedra as depicted in Figure 1.27. However, if the
boundary is not a sphere then one will not obtain a manifold by gluing the full tetrahedra.
This is because you would be gluing a ball into a higher genus hole. We can also just remove
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Figure 1.25: Gluing in codimension 2 for surfaces and three–manifolds. Pizza and tinned
pineapple.

Figure 1.26: Truncated tetrahedron.
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Figure 1.27: The extension of a triangulation to the vertices can only happen when the
boundary of the truncated triangulation are disjoint unions of sphere. The picture would
then correspond to pineapple segments coming together to form the ball.

Figure 1.28: Triangulation of S3.

the vertices to get an ideal triangulation, which is similar to the triangulation with truncated
tetrahedra but without boundary and therefore non-compact.

Example 3. Take the triangulation given by identifying edges and faces given in Figure 1.28.
Checking the behaviour around the vertices, we see that there are four boundary components
given by spheres triangulated by two triangles. Therefore, this triangulation extends to the
vertices to give a manifold. In fact, this manifold is nothing but the three sphere. Now take
the identification of two tetrahedra given in Figure 1.29. Analysing the vertices, one finds
that the boundary of the triangulation, using the truncated tetrahedra, has one connected
component given by a torus. Therefore, this gluing only gives an ideal triangulation. In fact,
this is an ideal triangulation of the figure eight knot complement as described in Example 4.

One may think that this obstruction could lead to problems in trying to understand three–
manifolds. However, it turns out to be a useful tool. Instead of taking triangulations using
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Figure 1.29: Triangulation of complement of the figure eight knot complement.

full tetrahedra, we can use ideal tetrahedra where we can always glue. This gives a way to
ideally triangulate knot complements.

1.7 Triangulation algorithm from a knot diagram

Given a knot diagram, there is an explicit algorithm to decompose the complement of the knot
into two polyhedra. Once this is done, one can choose a decomposition of these polyhedra
into tetrahedra. The decomposition into the two polyhedra is constructed by putting a
thickening of the knot diagram on a plane in R3, except at the crossing, where it goes above
and below. Then, away from the crossings, take the plane outside of the thickened knot
complement as the faces to be glued, as depicted in Figure 1.30. Finally, at a crossing, let
the four incident faces twist and come together in an edge linking the strand of the knot in
the over-crossing, to the stand in the under-crossing, as depicted in Figure 1.31. This will
give a polyhedral decomposition with two type of faces; the faces that glue, and the faces on
the boundary of the knot that are not glued. After cutting, the edge associated to a crossing
become four edges. An intermediate picture is given in Figure 1.32. This decomposition
can be given by the following algorithm:

• Take the knot diagram with at least one crossing and make two versions corresponding
to the top, and the bottom polyhedra.

• For the bottom, draw two vertices on either side of each over-crossing and connect
these along the knot diagram by some thickened shaded regions. Do the same for the
top but with the under-crossings.
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Figure 1.30: Polyhedral decomposition of a knot complement away from the crossings.

Figure 1.31: Polyhedral decomposition of a knot complement at the crossings.
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Figure 1.32: Two faces and an edge of the top polyhedron in the decomposition of a knot
complement.

• Then, draw an edge connecting the vertices to a point on the boundary of the thickened
shade regions, where the crossing was, with an arrow pointing towards the crossing if
on the bottom, and away from the crossing if on the top (see figures 1.31 and 1.32).
Label all edges associated to a crossing by the same label.

• This will decompose the plane into various simply connected regions, which will be the
faces of the polyhedron. Label the various faces consistently between the top and the
bottom pictures.

• The thicken shaded regions lie on the boundary of the knot, and these can be contracted
to a point to find the ideal polyhedral decomposition. Alternatively, these can simply
not be glued and they give a decomposition of the boundary into polygons.

• To finish, note that this picture of the two polyhedra is from outside of the bottom
and inside of the top. Therefore, flipping the picture corresponding to the top we find
the description of the two polyhedra.

This algorithm around a crossing is depicted in Figure 1.33. This algorithm will produce
unigons and bigons. Additional steps can be added to remove these. Unigons can only
appear from a twist as appears in Reidemeister I in Figure 1.3 and can therefore be removed
before the algorithm. There are two ways a bigon can appear. One comes from bigons of
the form of Reidemeister II in Figure 1.3. These can be removed before the algorithm. Then
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Figure 1.33: The algorithm to triangulate around a crossing. Imagine a worm in an apple
eating out the shape of a knot. Then cutting the apple in half where it has eaten gives the
thicken shaded regions. Compare the right part of this figure with the three dimensional
picture in Figure 1.32

the other option, where they are linked locally, will always have a picture of the form in
Figure 1.34, which can always be removed by identifying the edges bounding the bigon as
shown in the Figure 1.34.

Example 4 (Triangulating the figure eight knot complement). This method, applied in the
case of the figure eight knot, is shown in Figure 1.35. This example is also discussed in [183,
Ch. 1]. Here we leave the bigons, but after their removal we find the picture in Figure 1.29.

This algorithm is implemented in SnapPy [43]. This will be used later to implement various
computations. Before finishing we remark that ideal triangulations exist more generally
for cusped hyperbolic manifolds [35]. For links in S3, essentially the same arguments and
algorithms will construct a decomposition of the link complement into ideal tetrahedra.

1.8 Geometrisation

One of the triumphs of 3-dimensional topology is Thurston’s geometrisation conjecture [184].
This is now a theorem thanks to the work of Perelman [155, 157, 156]. Thurston’s geometri-
sation conjecture can be thought of as an analogue of the uniformisation conjecture for
surfaces. For surfaces, the uniformisation conjecture states that every conformal equivalence
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Figure 1.34: Removing non-trivial bigons.

class of metric on a surface has a representative of constant curvature. This then splits
surfaces into the famous trichotomy: constant curvature 1, constant curvature 0, constant
curvature −1. Pushing further, one can show that the only connected compact surface of
positive curvature corresponds to the two sphere, while the only one with vanishing curvature
is the torus. All higher genus curves are then hyperbolic, which shows that this is the most
common geometry. Although the situation in three dimensions is much more complicated,
it turns out to be very similar in spirit.

Firstly, one must decompose into basic building blocks. This is done by taking a so called
prime decomposition of the three–manifold. This expresses the manifold as the gluing of
a finite collection of manifolds with spherical boundaries that has no further non-trivial
decompositions. These building blocks are then cut further along non-trivially embedded
tori. What is left are some manifolds with torus boundaries. These are then given one of
eight geometries [184]. Hyperbolic geometry is the most common and important. As with
spherical and Euclidean geometries in two dimensions, the other geometries appear as special
cases. We will be mainly interested in the hyperbolic manifolds.

Hyperbolic structures come from quotients of hyperbolic space by a discrete group of isome-
tries. Complete hyperbolic surfaces have moduli. Indeed, for genus g surfaces there is a
6g − 6 (real) dimensional space of hyperbolic structures. This is not the case for higher
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Figure 1.35: Algorithm applied to the figure eight knot.
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dimensional manifolds. For higher dimensional hyperbolic manifolds the structure is unqiue.
This follows from the following theorem due to Mostow [135] and Prasad [159].

Theorem A–7 (Mostow–Prasad rigidity). Suppose M1 and M2 are connected, complete,
hyperbolic manifolds of dimension at least 3, and there exists an isomorphism

φ : π1(M1) ∼= π1(M2) . (1.13)

Then, φ is induced by an isometry of M1 and M2.

One of the beautiful outcomes of this is that, from topology, we get unique geometries.
This allows us to construct topological invariants from geometric invariants. For example,
the volume of a hyperbolic manifold will be a topological invariant. Isometries are also
algebraic, which turns topology, not only into geometry, but number theory. To construct
geometric structures we will decompose our manifolds, using triangulations, into geometric
tetrahedra.

1.9 Ideal tetrahedra

Before considering tetrahedra, we will consider ideal triangles. An ideal triangle is a hy-
perbolic (constant curvature negative one) triangle with geodesic boundaries with vertices
infinitely far from any other point. They can be embedded into H2 = {x + iy = z ∈ C :
=(z) > 0} the hyperbolic upper half space (which has metric (dx2 + dy2)/y2). Recall that
the geodesics of H2 are given by semicircles perpendicular to R and vertical lines. Then an
example of an embedding is shown in Figure 1.36. Given a geometric object like this, it is
natural to consider its moduli space. Here we can parametrise embeddings by three distinct
points on ∂H2 = RP1. However, we must consider the orbits under the automorphism group
of H2. The group of isometries of H2 is given by

Isom(H2) ∼= PSL2(R) , (1.14)

with action defined by real Möbius transformations such that(
a b
c d

)
· z =

az + b

cz + d
. (1.15)

Considering our parametrisation of the embedding by x1, x2, x3, as shown in Figure 1.36, we
can take the following isometry (

x3 − x1 x2(x1 − x3)
x3 − x2 x1(x2 − x3)

)
, (1.16)



74 CHAPTER 1. COMBINATORICS AND GEOMETRY OF THREE–MANIFOLDS

Figure 1.36: Embeddings of an ideal hyperbolic triangle.

which sends
x1 7→ ∞ , x2 7→ 0 , and x3 7→ 1 . (1.17)

Therefore, all ideal triangles are isometric to the embedding associated to x1 = ∞, x2 =
0, x3 = 1, which is depicted in Figure 1.36. So we have found that the moduli space of
hyperbolic triangles consists of a point. The volume of the ideal triangle is π, which of
course agrees with the Gauss–Bonnet theorem.
We can try the same thing for ideal tetrahedra. An ideal tetrahedron is a hyperbolic tetra-
hedron with geodesic boundaries whose vertices are infinitely far away from every other
point. To describe the moduli space of these objects we must understand upper half space
H3 = {(x + iy, h) ∈ C × R>0} (which has metric (dx2 + dy2 + dh2)/h2). Firstly, H3 has
geodesics given by vertical lines and semi-circles perpendicular to C. The boundary is now
∂H3 = CP1. The biholomorphisms of CP1 uniquely extend to isometries of H3. See for
Example [57, Ch. 1]. On the boundary these are given by complex Möbius tranforms and
we find that

Isom(H3) ∼= PSL2(C) . (1.18)
They act on H3 via(

a b
c d

)
· (z, h) =

(
(az + b)(cz + d) + ach2

|cz + d|2 + |c|2h2
,

h

|cz + d|2 + |c|2h2

)
. (1.19)

We can embed ideal tetrahedra into H3 by specifying four points on the boundary that don’t
lie in a single line, z1, z2, z3, z4 ∈ CP1. An example is depicted in Figure 1.37. We can act
on these embeddings via isometries and in particular we can take the isometry(

z3 − z1 z2(z1 − z3)
z3 − z2 z1(z2 − z3)

)
, (1.20)
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Figure 1.37: Embeddings of an ideal hyperbolic tetrahedra.
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which sends

z1 7→ ∞, z2 7→ 0 , z3 7→ 1 , and z4 7→ z =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
. (1.21)

Therefore, we see that all ideal tetrahedra are isometric to one with vertices at ∞, 0, 1, z
where z ∈ C\R is called the shape parameter. Denote this tetrahedron by ∆z. This is
depicted in Figure 1.37. However, there are more relations. Indeed, the following Möbius
transformations fix the set {∞, 0, 1} but give new values of z:(

0 1
−1 1

)
,

(
1 −1
1 0

)
. (1.22)

Letting z′ = 1/(1− z) and z′′ = 1− z−1 we see these isometries identify the tetrahedra

∆z
∼= ∆z′

∼= ∆z′′ . (1.23)

These preserve the orientation of the tetrahedron. There are still additional isometries, which
invert the orientation that are given by(

0 1
1 0

)
,

(
−1 1
0 1

)
,

(
1 0
1 −1

)
, sending z 7→ z−1, z 7→ 1− z , z 7→ z

z − 1
. (1.24)

This gives the full permutation group action on the vertices∞, 0, 1 and therefore all remain-
ing isometries. Considering these actions, one can show that a fundamental domain is given
by Figure 1.38. The parameters z can be directly related to aspects of the geometry of the
tetrahedron. Imagine looking down on the tetrahedron from infinity in a standard model
in the upper half space. Then, one would find an equilateral triangle with points at 0, 1, z
as seen in Figure 1.39. There, we see see that angles between faces can be computed from
the parameter z. In fact, using the angle formula there, one can see that the angles and
an oriented edge reconstruct z. To each edge of the tetrahedra we can associated one of
the parameters z, z′, z′′, which come in pairs of opposite edges as seen in Figure 1.39. The
edge from 0 to ∞ is given parameter z. All other edges can be determined using the five
automorphisms from equations (1.22) (1.24). The volume of the ideal tetrahedra can be
computed explicitly in terms of some special functions. Consider the Lobachevsky function

Λ(x) = −
∫ x

0

log |2 sin t|dt , (1.25)

and the Bloch-Wigner dilogarithm

D(z) = =(Li2(z)) + arg(1− z) log |z| , where Li2(z) = −
∫ z

0

log(1− w)
dw

w
, (1.26)

is the dilogarithm function discussed in more detail in Section 4.2.
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Figure 1.38: Moduli space of ideal tetrahedra where the edges with arrows are identified by
z 7→ z′ 7→ z′′ and the coloured regions are identified with the same maps. The fixed point is
given by e

2πi
6 , which is like an equilateral ideal tetrahedron (see Figure 1.39).

Figure 1.39: On the left, an ideal tetrahedron from infinity. The angles are computed by
arg(z), arg(1/(1 − z)), arg(1 − 1/z) as depicted. Note that when z = e

2πi
6 the triangle is

equilateral. On the right, the labellings of an ideal tetrahedron
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Figure 1.40: Cusps of three–manifolds are one–manifolds.

Theorem A–8. [183, Thm. 7.2.1][206, Eq. 8] The volume of an ideal tetrahedron associated
to z ∈ h is given by

Vol(∆z) = Λ(arg(z)) + Λ(− arg(1− z)) + Λ(arg(1− 1/z)) = D(z) . (1.27)

For example, the volume of the equilateral tetrahedron, which is the maximum volume of
any ideal hyperbolic tetrahedron, is given by

D(e2πi/6) = 1.0149416064096536250 · · · . (1.28)

1.10 Gluing equations
Topologically, we can construct ideal triangulations of knot complements and more general
three–manifolds. It now becomes of interest as to whether these ideal tetrahedra can be
glued together geometrically. The complete hyperbolic structure on the complement of a
knot has the knot has a cusp, as it is an open manifold. In two dimensions, cusps correspond
to points, while in three dimensions this increases to a one manifold. This is depicted
in Figure 1.40. The boundaries of the hyperbolic ideal tetrahedron are hyperbolic ideal
triangles. As we saw in Section 1.9, there is only one hyperbolic ideal triangle and it has no
automorphisms that don’t swap edges. Therefore, the topological identification of the faces
has a unique geometric gluing. Therefore we need to check whether the gluing around an
edge is geometric. To do this, consider an edge in an ideal triangulation. This edge has,
say, n edges of tetrahedra incident to it2. Suppose that this edge, in these tetrahedra, is
associated to the shape parameters z1, . . . zn as we go around the edge. Consider the picture
in the universal cover in upper half space looking down from the point at infinity. Moreover,
suppose that the sequence of tetrahedral edges goes counter clockwise. The isometries that
glue the tetrahedra together fix the points at infinity and zero and therefore are of the form(

α 0
0 α−1

)
. (1.29)

2The same tetrahedra can contribute more than once.
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Figure 1.41: Gluing ideal tetrahedra around an edge.

Importantly, this means they all commute. Using the isometries that send z 7→ z
∏j

i=1 zi on
the standard model of the sequence of tetrahedra, we find the picture in Figure 1.41. The
monodromy is then given by (∏n

i=1

√
zi 0

0
∏n

i=1

√
zi
−1

)
. (1.30)

The vanishing of the monodromy around the edge, or equivalently the picture fitting to-
gether3, immediately indicates that if this triangulation is geometric with parameters zi, we
must have

n∏
i=1

zi = 1 . (1.31)

This equation is called an edge equation. If this equation holds for every edge, then we see that
gluing these geometric tetrahedra gives a geometric structure on the three–manifold. This
has reduced the construction of a hyperbolic metric to finding an ideal triangulation and a
point in an associated algebraic variety. This description of the variety has some redundancy
and in general the variety will have positive dimension. To get a complete hyperbolic metric,
which should have no moduli from Theorem 7, we need to add an additional equation that
deals with the behaviour at the boundaries. To understand this equation we need to introduce
horospheres.

In the standard model of the tetrahedron, the horospheres around the point at infinity are
just given by equilateral triangles parallel4 to C. They are defined more generally as the
subspaces around a point such that all geodesics through that point are orthogonal to the

3This means that the final tetrahedron glues to the first by an isometry.
4All in the Euclidean metric.
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Figure 1.42: A horosphere around ∞.

space. These triangles are flat with the induced metric and are depicted in Figure 1.42.
Importantly, their metrics, regardless of all being flat, are scaled by the inverse of their
height squared.

Take the union of all cells of the triangulation incident to an ideal vertex. This is some open
submanifold and we can take its universal cover. The ideal vertex of a knot complement
corresponds to a toroidal boundary component. Therefore, looking from the vertex, which we
put at infinity, we see locally tessellations of C by triangles in the universal cover. Consider a
closed curve in that boundary. Take a representative in the universal cover of the manifold,
starting in some tetrahedra, and continue the curve in horospheres. As we continue a curve
through the various tetrahedra in the universal cover, the tetrahedra are then all related
to the standard models by isometries. This time, the isometries won’t preserve zero as the
curve will pass multiple edges. However, they will preserve infinity as we have continued the
curve in horospheres and it therefore never leaves through a bottom face5. Therefore, the
isometries will be of the form (

α β
0 α−1

)
. (1.32)

These matrices do not in general commute. However, the map to C× taking the (1, 1) entry
is a homomorphism. Take the shapes zi of the edges of tetrahedra that the path travels
around. We see that the gluing is then done by isometries of the form z 7→ z

∏j
i=1 zi +βj for

some βj as pictured in Figure 1.43. Then we see that the monodromy around the curve in

5We can always choose higher horospheres to avoid hitting a bottom face, as we will only pass through
finitely many tetrahedra for one loop.
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Figure 1.43: A boundary curve in the universal cover continued in horospheres. The
tetrahedra it passes through are glued from their standard models via the automorphisms
z 7→ z

∏j
i=1 zi + βj.

the boundary is given by (∏n
i=1

√
zi βn

0
∏n

i=1

√
zi

)
. (1.33)

We claim that a complete hyperbolic structure implies that
n∏
i=1

zi = 1 . (1.34)

To show this, we will first show that the holonomy around the boundary curves must act by
isometries of two–dimensional Euclidean space, which is equivalent to

∏n
i=1 |zi| = 1. If not,

then one curve must induce an element that is not an isometry and therefore must expand
or contract. For some curve on the boundary, we must then have

∏n
i=1 |zi| > 1, as we can

always take the inverse of a curve. Consider a base point (z, h) ∈ H3 for this curve in the
initial tetrahedra with vertices places at (∞, 0, 1, z1). Then continue the curve in horospheres
from one tetrahedra to another. After one loop we find that we land back in the a shift of
the original tetrahedron by the isometry (1.33). This shift of the original tetrahedron has
vertices at (∞, βn,

∏n
i=1 zi + βn, z1

∏n
i=1 zi + βn) and we end up in the horocycle of height6

h
∏n

i=1 |zi|. Therefore, the projection7 of the horosphere onto C appears to be
∏n

i=1 |zi| > 1

6Euclidean.
7Euclidean.
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Figure 1.44: The lift of a curve in horospheres spiralling towards the cusp of an incomplete
hyperbolic structure.

times as big, however, the metric is quadratically decaying in the height and therefore the
length of the arc in the horosphere in that tetrahedron decreases by a factor of

∏n
i=1 |zi| at

each iteration. This implies that the lift of the all the iterations of the curve has finite length8.
Choosing the lifts of the initial point in this curve, therefore, gives a Cauchy sequence that
is not convergent. This argument is discussed more generally in [183] and depicted here in
Figure 1.44

Finally, the only way to find a manifold as the quotient under Euclidean isometries is to have
no fixed points. This implies we must have a Euclidean torus and therefore that

∏n
i=1 zi = 1

for all boundary curves. Equivalently, this means the holonomy at the boundary is parabolic,
i.e. conjugate to (

1 1
0 1

)
. (1.35)

Example 5 (The figure eight knot). Consider the triangulation of the figure eight knot in
Figure 1.29, which appears again in the top of Figure 1.45. We can compute the gluing
equations as shown in Figure 1.45. This shows that the two tetrahedra that give the complete
hyperbolic structure are given by the equilateral tetrahedra with shapes e

2πi
6 . This already

indicates that the hyperbolic volume of the figure eight knot complement is given by

Vol(S3 − 41) = 2Vol(∆e2πi/6) = 2D(e2πi/6) = 2.0298832128193072500 · · · . (1.36)
8This is because it converges like a geometric series with each iteration of the loop.
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Figure 1.45: Gluing equations of the figure eight knot.
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Although for knots we are interested mostly in the complete solution, when we perform
surgery it becomes natural to take deformations of the hyperbolic structure on the knot
complement, which will of course no longer be complete. When one performs surgery one of
the peripheral curves is glued to a disk in the solid torus. This curve must then have trivial
monodromy. Therefore, if we find a solution that makes this curve have trivial monodromy
the non-complete structure on the knot complement will in fact give rise to a hyperbolic
structure on the manifold obtained by surgery. The structure on the ideal triangulation
is given by the hyperbolic structure on the manifold obtained by surgery with a geodesic
removed (which corresponds to the solid torus we have filled in). The length of this geodesic
can be computed from the cusp equations. Indeed, if M and L represent the holonomy of
the longitude and the combination γm+ δ` is dual to the curve that is glued to the disk in
the solid torus then the length is

length(γm+ δ`) = −γ log |M | − δ log |L| . (1.37)

More generally, we can compute the complex length by removing the absolute values. This
captures some torsion of the curve as an imaginary part [146, 145].

With all of these gluing equations, we want a way to store this data and understand how the
various choices effect it. This will done via Neumann-Zagier matrices and will be discussed
in the next section.

1.11 Neumann–Zagier matrices of a knot
We want to completely describe the variety that gives the complete hyperbolic structure.
Firstly, we need to understand how many edges and tetrehedra there are in the polyhedral
complex. For a knot K, from for example Mayer-Vietoris, we have

Hk(S
3 −K) =

{
Z if k = 0, 1
0 else . (1.38)

Therefore, the Euler characteristic vanishes. If we have an ideal triangulation of a knot
complement with tetrahedra T , faces F and edges E, noting #F = 2#T , we have that

#E = #T . (1.39)

Therefore, we have non–canonical bijections between the tetrahedra and the edges. Let this
number be denoted by #E = #T = N . To store the data of the triangulation choose for each
tetrahedra an edge, which will correspond to the edge connecting 0 and ∞ in the standard
model. Let this edge for t ∈ T have shape parameter zt. Then every edge of the tetrahedron
t are labeled by zt, z′t, z′′t following Figure 1.39. To each edge e ∈ E in the triangulation we
can store how many times the edges associated with zt, z′t, z′′t of a tetrahedron t appears. For
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the three pairs of edges this will give us a number in the set {0, 1, 2}. Denote these numbers
by

Ge,t, G′e,t, and G′′e,t , (1.40)

and note that ∑
e∈E

Ge,t =
∑
e∈E

G′e,t =
∑
e∈E

G′′e,t = 2 . (1.41)

With this definition, the edge equation associated to e is given by∏
t∈T

z
Ge,t
t (z′t)

G′e,t(z′′t )G
′′
e,t = 1 . (1.42)

These equations have one redundancy associated the fact the product of all the equa-
tions (1.42) over e is one, which follows from equation (1.41) and the equation

zz′z′′ =
z(1− z−1)

1− z = −1 . (1.43)

To the edge equations, if we want the complete hyperbolic structure, we add the cusp equa-
tions. Choose curves generating the homology of the boundary and represent them as a path
in the boundary using the truncated tetrahedra avoiding the edges, which are vertices on
the triangulation of the boundary surface. Let Gc,t, G

′
c,t, G

′′
c,t ∈ Z be a signed count of the

number of times the cycle around the cusp passes an edge of the tetrahedron t, keeping track
of the orientation. The cusp equations are then of exactly the same form as equation (1.42),∏

t∈T

z
Gc,t
t (z′t)

G′c,t(z′′t )G
′′
c,t = 1 . (1.44)

Choose a meridian for the cusp and denote it m. We can use equation (1.43) to reduce these
equations further. For d ∈ E ∪ {m} let

Ad,t = Gd,t −G′d,t , Bd,t = G′′d,t −G′d,t , and νd = 2− 2δc,d −
∑
t∈T

G′d,t . (1.45)

The gluing equations equations now become∏
t∈T

z
Ad,t
t (z′′t )B

′′
d,t = (−1)νd . (1.46)

Then, by dropping an edge e ∈ E and labeling the remaining edges 1, . . . , N − 1, the cusp
N , and the tetrahedra from 1, . . . N we can put this into a N × 2N matrix,A1,1 . . . A1,N B1,1 . . . B1,N

: . . . : : · · · :
AN,1 . . . AN,N BN,1 . . . BN,N

 (1.47)
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called a Neumann–Zagier matrix. We can add half of the additional cusp equation, cor-
responding to the longitude `, as an additional row to get an extended Neumann–Zagier
matrix . 

A1,1 . . . A1,N B1,1 . . . B1,N

: . . . : : · · · :
AN,1 . . . AN,N BN,1 . . . BN,N

C1,1 . . . C1,N D1,1 . . . D1,N

 (1.48)

This matrix satisfies an important symplectic property summarised in the following theorem.

Theorem A–9. [144, Thm.4.1][146, Thm. 2.2] The matrix in equation (1.47) is half sym-
plectic, meaning that ABT is symmetric and that the 2N columns span ZN . Moreover, the
matrix in equation (1.48) can be extended to a symplectic matrix in Sp2N(Q)9.

This result is presented here for manifolds with one torus boundary. However, it follows
more generally for multiple torus boundaries. The matrices are then constructed by removing
additional redundant edge equations and replacing them with meridian equations and adding
the longitudes in the bottom half [146, 144]. For another introduction to Neumann–Zagier
matrices, see [45]. A nice discussion of the work related to this result is given can be found
in [84]. Also see [48] for another approach using abelianisation.

Example 6 (Figure eight knot). The previous example of the figure eight knot can now
be put into the form of Neumann–Zagier. In particular, considering Figure 1.35 we find
matrices

A =

(
−1 −1
−1 0

)
and B =

(
−2 −2
−1 −1

)
. (1.49)

One can check that (A B) is half symplectic.

Computation of the Neumann–Zagier matrices is implemented in SnapPy [43]. For example,
we can compute for the figure eight knot again.

1 In[1]: M=Manifold("4_1")
2 In[2]: M.gluing_equations ()
3 Out [2]:
4 matrix ([[ 2, 1, 0, 2, 1, 0],
5 [ 0, 1, 2, 0, 1, 2],
6 [ 1, 0, 0, 0, 0, -1],
7 [ 1, 1, 1, 1, -1, -3]])

The first two entries are the edge equations, the third represents the meridian, and the last
is a longitude equation. Therefore, the first and third equations give

z2z′w2w′ = 1 and zw′′−1 = 1 . (1.50)

9The denominators are at most 2
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This gives Neumann–Zagier matrices

A =

(
1 1
1 0

)
and B =

(
−1 −1
0 −1

)
. (1.51)

Solving, we again find that z = w = exp(2πi/6). We can also read off the extended
Neumann–Zagier matrices by considering the last row, which gives the cusp equation for
the longitude. The equation is

w2w′′−2 = 1 . (1.52)

Therefore, the first row of the bottom of the extended Neumann–Zagier matrix is given by

C =
(
0 1

)
and D =

(
0 −1

)
. (1.53)

SnapPy has the ability to draw in knots, but has stored a few simple knot. We can try
with a few knots on the table 1.4. Next we will take 52 in Code 3. This shows that 52 has
Neumann–Zagier matrices

A =

 1 −1 1
−1 0 −1
−1 0 0

 and B =

1 −2 1
0 2 0
0 1 0

 . (1.54)

Solving these equations gives

z3
1 − 2z2

1 + 3z1 − 1 = 0 , z2 = z2
1 − z1 + 2 , and z3 = z1 . (1.55)

The field defined by this variety is the cubic field of discriminant −23. Finally, we will
compute for 74 in Code 4. This gives Neumann–Zagier matrices (in our convention as the
computer uses z, z′−1)

A =


1 0 0 0 0 0
−1 −1 0 0 −1 0
0 1 −1 −1 1 1
−1 0 0 1 −1 0
1 0 0 0 0 −1
2 0 1 0 1 0

 , B =


0 −1 −1 0 1 0
0 0 0 1 −1 1
1 0 −1 −1 0 0
−1 0 1 0 −1 0
0 1 1 −1 0 0
0 −1 −1 0 2 −1

 (1.56)

To compute the solutions this is best done with SnapPy [43] in Sage [182]. Here we find two
Galois orbits of solutions. One is defined over the field generated by roots of the polynomial

x4 + 3x3 + 2x2 + 1 , (1.57)

while the other is defined over the field generated by roots of the polynomial

x3 − 2x2 − x− 2 . (1.58)

This is done in Code 5.
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1.12 Pachner moves and Neumann–Zagier equivalences

There are various choices that we have made in defining Neumann–Zagier matrices. These led
to equivalence relations between half symplectic matrices. As usual, constructing invariants
of half symplectic matrices under these moves leads to invariants of the manifolds. These
equivalences are discussed in detail in [45]. We will recall them here. The choices we made
in defining Neumann–Zagier matrices were as follows:

• choosing an ordering of a tetrahedra,

• choosing an ordering of the edges, an edge to discard, and a meridian,

• choosing an edge to label zi for each tetrahedra (also know as a quad type).

We will now see how changing these choices alters the matrices. Suppose we alter the order
of the tetrahedra. Then this simply permutes the columns of A and B. Let σ be the
permutation matrix associated to the permutation of the columns. Then this says in matrix
form that (

A B
)
∼
(
A B

)(σ 0
0 σ

)
. (1.59)

Notice that σ−1 = σT and therefore,(
σ 0
0 σ

)
∈ Sp2N(Z) , (1.60)

where

Sp2N (Z) =

{(
A B
C D

)
∈ GL2N (Z) : ATC = CTA , BTD = DTB , ATD − CTB = IN

}
.

(1.61)
If we alter the order of the edges, the edge we remove, or the meridian’s path, this will
alter the Neumann-Zagier matrices by multiplication on the left by some special elements
P ∈ GLN(Z). See [45, Sec. 3.3 and 3.4.]. However, more generally, it won’t affect solutions
if we multiply by any P ∈ GLN(Z). Therefore, for any P ∈ GLN(Z) we have(

A B
)
∼ P

(
A B

)
. (1.62)

Notice that (
P 0
0 P−T

)
∈ Sp2N(Z) . (1.63)

Suppose we alter the edge we chose for the first tetrahedra. That is, we rewrite the equations
in z′1 and z1 as opposed to z1 and z′′1 . Then as z′′1 = −z−1

1 z′−1
1 we find that the first column
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A−,1 becomes −B−,1 while the first column B−,1 becomes A−,1 − B−,1. This can be written
in matrix form (

A B
)
∼
(
A B

)(Q11 Q12

Q21 Q22

)
(1.64)

where

Q11 =


0 0 . . . 0
0 1 . . . 0
: : . . . :
0 0 . . . 1

 , Q12 =


−1 0 . . . 0
0 0 . . . 0
: : . . . :
0 0 . . . 0

 ,

Q21 =


1 0 . . . 0
0 0 . . . 0
: : . . . :
0 0 . . . 0

 , Q22 =


−1 0 . . . 0
0 1 . . . 0
: : . . . :
0 0 . . . 1

 .

(1.65)

Notice that (
Q11 Q12

Q21 Q22

)
∈ Sp2N(Z) . (1.66)

These equivalences generate a relation that makes all of the different choices lead to the
same equivalence class. However, this says nothing about the relations between different
triangulations. To understand how to relate ideal triangulations we need to understand
Pachner moves. The only Pachner move we will need is the 2–3 Pachner move. This takes
two geometric tetrahedra glued along a face and adds an edge through this face from the
vertices not bounding the glued faces in the tetrahedra. This gives three tetrahedra and can
be seen in Figure 1.46. The shapes completely determine each other. This move generates
the equivalence relation on triangulations of cusped manifolds.

Theorem A–10. [130, 131, 158] All ideal triangulations of a three–manifold are related by
2–3 Pachner moves.

From Figure 1.46 we get the following equations for the new variables

w′1 = z1z2 , w′2 = z′1z
′′
2 , and w′3 = z′′1z

′
2 , (1.67)

and inversely
z1 = w2w

′′
3 , z′1 = w3w

′′
1 , z′′1 = w1w

′′
2 ,

z2 = w′′2w3 , z′2 = w′′1w2 , z′′2 = w′′3w1 .
(1.68)

This implies that going from the matrices (A B) associated to the z variables we find that

(
A B

)
∼
(

1 0 0 0
0 A 0 B

)(
T11 T12

T21 T22

)
, (1.69)
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Figure 1.46: 2-3 Pachner move with shapes labelled. See equations (1.67) (1.68) for the
relations between the shapes.

where

T11 =


−1 −1 −1 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
: : : : . . . :
0 0 0 0 . . . 1

 , T12 =


−1 −1 −1 0 . . . 0
0 0 1 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
: : : : . . . :
0 0 0 0 . . . 0

 ,

T21 =


1 0 0 0 . . . 0
1 0 0 0 . . . 0
1 0 0 0 . . . 0
0 0 0 0 . . . 0
: : : : . . . :
0 0 0 0 . . . 0

 , T22 =


0 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
: : : : . . . :
0 0 0 0 . . . 1

 .

(1.70)

Notice that (
T11 T12

T21 T22

)
∈ Sp2N+2(Z) . (1.71)

Therefore, we see that all Neumann–Zagier matrices for a given manifold are related by the
equivalences in equations (1.59) (1.62) (1.64) (1.69).
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Remark 2. Notice that these equivalences can be lifted from half symplectic matrices to full
symplectic matrices. Then we can add additional equivalence given by(

A B
C D

)
∼
(
I 0
S I

)(
A B
C D

)
(1.72)

where S = ST ∈MN×N(Z). The set of equivalence classes will then be the same as this fixes
the

(
A B

)
but gives all completions to the lower half of the symplectic matrix.

1.13 The Chern–Simons functional
The Chern–Simons functional gives an invariant of connections on a three–manifold [61].
More generally, Chern–Simons forms [40, 37], are antiderivatives of characteristic classes on
a manifold M formed by taking polynomials in the curvature form on M × [0, 1]. Recall,
that for a Lie group G, with Lie algebra g, a connection on a principle G bundle π : P →M
is equivalently defined to be either: a splitting of the tangent bundle TP into vertical and
horizontal sub-bundles, an equivariant projection onto the vertical subbundle of TP , or a
connection 1–form (a form that looks like the Maurer–Cartan on the fibres). The space of
connections AP is an affine space modelled on Ω1(M, gP ), the 1–forms on M valued in the
adjoint bundle gP . Locally in some neighbourhood U ⊆ M (or globally when the bundle
is trivial P = M × G) there is a canonical connection associated to a trivialisation of the
bundle. Moreover, Ω1(M, gP ) are locally given by elements of Ω1(U, g), Lie algebra valued
one-forms. The automorphisms of the bundle, GP , act on the space of connections. These
automorphisms are called gauge transformations. They are locally given by g : U → G and
act locally via

g · A = g−1Ag − g−1dg . (1.73)

The Chern–Simons invariant is almost independent of gauge in C. It is defined for closed
three–manifolds with trivial bundle as

CS : AM×G/GM×G → C/4π2Z s.t. CS[A] =

∫
M

Tr
(
dA ∧ A+

2

3
A ∧ A ∧ A

)
, (1.74)

where Tr is an invariant bilinear form normalised so that, for the Maurer–Cartan form on G
given by g−1dg, the class

1

6π2
Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
(1.75)

is an integral cohomology class. For the case that G = SL2(C) taking the standard Tr(a, b) =
Tr(ab) gives such an example. The reason this is only valued in C/4π2Z is that

CS[g · A] = CS[A]− 2

3

∫
M

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
∈ CS[A] + 4π2Z , (1.76)
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as the second integral is the integral of a pullback under the gauge transformation g of 4π2

times the integral cohomology class in equation (1.75). When M has boundary, the Chern–
Simons invariant has an additional boundary term under gauge transformations given by

CS[g · A]− CS[A] =

∫
M

d Tr
(
g−1Ag ∧ g−1dg

)
− 2

3

∫
M

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
. (1.77)

Taking exp((CS[g ·A]−CS[A])/2πi) then gives a cocycle on the boundary ∂M . This implies
that, generally the Chern–Simons invariant naturally lives on a complex line bundle on the
boundary called the Chern–Simons lines, discussed for example in [61, 162]. Now we will
almost exclusively be interested in this invariant at special connections called flat connections.
A connection is called flat when its curvature,

FA = dA+
1

2
A ∧ A ∈ Ω2(M, gP ) , (1.78)

vanishes. The flat connections up to gauge equivalence on a connected manifold are equiva-
lent to the representations of the fundamental group up to conjugation i.e.⊔

P/∼

Aflat
P /GP ∼= Hom(π1(M), G)/G =: R(M,G) . (1.79)

This equivalence is constructed via holonomy representations. The Chern–Simons lines can
be used to define a line bundle on the analogue of this space on the boundary [61, 115]. For
G = SL2(C), we will often be interested in finitely many flat connections up to gauge. Then,
the line bundles trivialise at these points and we will just get complex numbers.

A complete hyperbolic three–manifold M can be expressed as the quotient of hyperbolic
three–space H3 via some subgroup Γ ⊆ SL2(C). This gives an isomorphism Γ ∼= π1(M) and
therefore a flat SL2(C)–connection on M . We call this connection the geometric connection.
Noting that PSL2/SO(3) = H3, this manifold also has an associated flat SO(3)–connection.
The SL2(C) Chern–Simons invariant of the geometric connection splits into a real part, given
by the Chern–Simons invariant of the natural SO(3) connection, and an imaginary part,
given by the volume of the manifold. This was first suspected by Thurston [184], extended
in [146] and proved in [200]. This is one indication that the calculation of the Chern–
Simons invariant could be abstractly made with simplices. Summing over contributions
from simplices is one of the most natural ways to compute volume. This indeed extends to
the complexified volumes or Cheeger–Chern–Simons invariant and will be discussed in the
next section. Alternatively, to compute the values at flat connections using the connections
more explicitly see [114, 115, 127]. However, even there simplices play an important role.

Remark 3. The geometric connection was implicitly constructed in Section 1.10 via tetra-
hedra. Tetrahedra can also be used to construct other SL2(C)–connections as well. This is
done by gluing the flat connections associated to the to the shape parameters of the tetrahedra.
These all correspond to special points on the A–polynomial.
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1.14 The Bloch group

The 2–3 Pachner move completely describes the equivalence relation between triangulations.
This relation, at the geometric level, can be used to define an algebraic relation. This kind
of construction was introduced by Dehn in his solution to Hilbert’s third problem. There,
he constructs an algebraic invariant of polyhedra in Euclidean three space that is invariant
under cutting and pasting along planes. Two polyhedra obtained by cutting and gluing
in this way are called scissor congruent. Dehn showed that the cube and the tetrahedron
have different algebraic invariants, which solved the long standing question, in the negative,
of whether the formula for the volume of a pyramid could be proved without methods of
exhaustion. We can construct a similar invariant of ideal hyperbolic polyhedra [52, 53]. This
is done by decomposing into tetrahedra and taking formal sums while keeping track of the
shape parameters associated to each tetrahedra. This captures part of the information of the
2–3 Pachner move, as any triangulations related by this move are scissor congruent. This
algebraic construction can be defined more generally over any field and relates to algebraic
K–theory of that field.

Let K be a field. Then consider the linear map

d : Z[KP1]→ K× ∧Z K× s.t. d([z]) = 2(z ∧ (1− z)) , (1.80)

where d([0]) = d([1]) = d([∞]) = 0. Notice that letting

c(x, y) = [x]− [y] +

[
y

x

]
−
[

1− x−1

1− y−1

]
+

[
1− x
1− y

]
, (1.81)

we have
d(c(x, y)) = 0 . (1.82)

Notice that c(x, y) is very closely related to the behaviour of the shapes in the 2–3 move 1.46.
In fact, setting x = x1, y = 1/x2 and using the relations below in equation (1.84) gives the
equivalence. Let F be the module generated by c(x, y) where we avoid any x, y that lead to
terms of the form 0/0,∞/∞.

Definition 5 (Bloch group). The Bloch group is defined to be the quotient of the kernel of
d by the five term relation (1.81), i.e.

B(K) = ker(d)/F . (1.83)

Considering combinations of c(x, y) for some x, y ∈ {0, 1,∞} gives some immediate relations

[x] =

[
1

1− x

]
=
[
1− x−1

]
= −

[
x−1
]

= −[1− x] = −
[

1

1− x−1

]
(1.84)
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and
[0] = [1] = [∞] = 0 . (1.85)

Compare these relations with the properties of the ideal hyperbolic tetrahedron discussed in
Section (1.9). We will mainly be interested in B(C). This Bloch group fits into a short exact
sequence [145]

0→ Q/Z→ Hgrp
3 (PSL2(C),Z)→ B(C)→ 0 . (1.86)

This can be described more generally for infinite fields using the third indecomposable alge-
braic K group [180, 210] as

0→ l̃µ.. K → K ind
3 (K)→ B(K)→ 0 , (1.87)

where l̃µ.. K is the unique non-trivial extension of the roots of unity by Z/2Z (and in char-
acteristic 2 it is just the roots of unity lµ.. K). The description of the Bloch group, at least
for number fields, can be extended to include torsion giving a presentation of K ind

3 (K) [210].
We will, however, mainly be interested in the case of K = C covered in [145]. This will be
discussed below in definition 6.

Firstly, an obvious question is whether we can find elements of B(C). In fact, three–manifolds
provide the ability to construct elements using Neumann–Zagier matrices. However, more
generally half symplectic matrices lead to elements. Let

(
A B

)
be anN×2N half symplectic

matrix with completion (
A B
C D

)
∈ Sp2N(Z) (1.88)

and let zi ∈ CP1 − {0, 1,∞} such that

N∏
j=1

z
Ai,j
j (1− zj)Bi,j = 1 . (1.89)

Then we find that

d

( N∑
i=1

zi

)
=

N∑
i=1

zi ∧ (1− zi) =
N∑

i,j,k=1

(Aj,iDj,k − Cj,iBj,k)zi ∧ (1− zk)

=
N∑

j,k=1

Dj,k

( N∏
i=1

z
Aj,i
i

)
∧ (1− zk)−

N∑
i,j=1

Cj,izi ∧
( N∏
k=1

(1− zk)Bj,k
)

=
N∑

j,k=1

Dj,k

( N∏
i=1

(1− zi)−Bj,i
)
∧ (1− zk)−

N∑
i,j=1

Cj,izi ∧
( N∏
k=1

z
−Aj,k
k

)

= −
N∑

i,j,k=1

Bj,iDj,k(1− zi) ∧ (1− zk) +
N∑

i,j,k=1

Cj,iAj,kzi ∧ zk = 0 ,

(1.90)
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where the second equality follows from the fact that ATD−CTB = I, and the last equality
follows form the fact BTD and CTA are symmetric, exactly the conditions given by equa-
tion (1.88). Now we can construct large numbers of elements, however an obvious question
is whether these are non-trivial. The easiest way to check this is using a homomorphism to
R. This will be discussed further in the next Section 1.15. For now, we will desribe how to
deal with the torsion elements in Hgrp

3 (PSL2(C),Z).

To deal with the torsion we need to introduce flattenings. These are logarithms of the shapes
such that the sum over the three logarithms vanishes. A combinatorial flattening of an ideal
tetrahedra with shape z is given by

`(z; p, q) = (log(z) + pπi,− log(1− z) + qπi,− log(z) + log(1− z)− pπi− qπi) . (1.91)

This can be thought of as a map from Ĉ, the Riemann–surface for the multivalued function
(log(z) + pπi,− log(1− z) + qπi) [145, Sec.2], to C3. Then the lift of d in equation (1.80) is
given by the linear map

d̂ : Z[Ĉ]→ C ∧Z C s.t. d̂([z; p, q]) = (log(z) + pπi) ∧ (− log(1− z) + qπi) . (1.92)

The analogue of the 5–term relation must also be lifted. Consider again the 2–3 move in
Figure 1.46. This should give a five term relation where we insist that the additional edge,
in the middle, has the sum of the three contributions vanish. Checking the implications
this has on the flattenings [145, Lem. 3.4], we find that the correct five term relation lifting
equation (1.81) is given by

c(x, y; p0, p1, q0, q1, q2) = [x; p0, q0]− [y; p1, q1] +

[
y

x
; p1 − p0, q2

]
−
[

1− x−1

1− y−1
; p1 − p0 + q1 − q0, q2 − q1

]
+

[
1− x
1− y ; q1 − q0, q2 − q1 − p0

]
.

(1.93)

We include the additional transfer relation

[z; p, q] + [z; p′, q′] = [z; p, q′] + [z; p′, q] , (1.94)

which, when multiplied by two, is a combination of 5–term relations. Again, we can explicitly
compute that, for x, y such that all the terms in equation (1.81) are in h,

d̂(c(x, y; p0, p1, q0, q1, q2)) = 0 . (1.95)

Let F̂ be the module generated by c(x, y; p0, p1, q0, q1, q2) with x, y such that all terms in
equation (1.81) are in h and the elements [z; p, q] + [z; p′, q′]− [z; p, q′]− [z; p′, q].
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Definition 6 (The extended Bloch group). The extended Bloch group is defined to be the
quotient of the kernel of d̂ by the extended five term relation and the transfer relation, i.e.

B̂(K) = ker(d̂)/F̂ . (1.96)

The extended Bloch group exactly describes the addition of torsion to the group homology of
Hgrp

3 (PSL2(C),Z). Neumann [145, Thm. 2.6] proves the following theorem with an explicit
isomorphism.

Theorem A–11. There is an isomorphism

Hgrp
3 (PSL2(C),Z) ∼= B̂(C) . (1.97)

Neumann [145, Sec. 14] goes on to show that for ideal triangulations of three–manifolds and
surgery on them, we can construct elements of the extended Bloch group for any flat SL2(C)
connection. This is done by solving the logarithmic gluing equations (1.42)∑

t∈T

Gd,t(log(zt) + ptπi) +G′d,t(− log(1− zt) + qtπi)

+G′′d,t(− log(zt) + log(1− zt)− ptπi− qtπi) = 0 ,

(1.98)

for all d ∈ E∪C where E is the set of edges and C is the set of peripheral curves (including the
longitude). Importantly, not all connections will appear as solutions to the gluing equations
for a given triangulation. However, the connection corresponding to the geometric structure
will always appear. The reasons other solutions may not appear is that that may correspond
to solutions where z ∈ {0, 1,∞}. The class corresponding to the geometric connection will
be a solution with all shapes in h. This will give the complete hyperbolic structure and all
solutions with this property will give the same class in the Bloch group by Mostow–Prasad
rigidity, given in Theorem 7.

Remark 4. There is another notation of flattening which is an integral solution to gluing
equations. This is used for example in [45, 144] and it constructs elements in a quotient of
the extended Bloch group, which removes some torsion.

Example 7 (Elements of the extended Bloch group from 52). We can represent the el-
ement of the extended Bloch group corresponding to a solution z

(j)
1 , z

(j)
2 , z

(j)
3 for the gluing

equations (1.55) for 52 as

[z
(j)
1 ; p

(j)
1 , q

(j)
1 ] + [z

(j)
2 ; p

(j)
2 , q

(j)
2 ] + [z

(j)
3 ; p

(j)
3 , q

(j)
3 ] . (1.99)

Then we must check the logarithmic gluing equations around the edges and the peripheral
curves. This means we need the extended Neumann–Zagier matrix, which includes the lon-
gitude 1.48. Considering, the solution to the gluing equations with z

(3)
1 = 0.78492 · · · +

1.3071 · · · i (the third solution in PARI/GP indexing z1[3]) we get

p
(3)
1 = p

(3)
3 , q

(3)
1 = q

(3)
3 , p

(3)
2 = −2p

(3)
3 − 2q

(3)
3 + 2 , q

(3)
2 = p

(3)
3 + 2q

(3)
3 + 1 . (1.100)
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If we consider the real embedding z(1)
1 = 0.43015 · · · (the first solution in PARI/GP indexing

z1[1]), then from a similar computation we find that

p
(1)
1 = p

(1)
3 , q

(1)
1 = q

(1)
3 , p

(1)
2 = −2p

(1)
3 − 2q

(1)
3 , q

(1)
2 = p

(1)
3 + 2q

(1)
3 + 1 . (1.101)

This is illustrated for the first example in the PARI/GP [20] Code 6.

Example 8 (Elements of the extended Bloch group from surgery on 52). Now the equations
for the holonomy of the meridian and longitude are given by

M = z−1
1 (1− z−1

2 ) , and L = z2
1(1− z−1

1 )−3z2(1− z−1
2 )−2(1− z−1

3 ) . (1.102)

Therefore, the equations for the hyperbolic structure on 52(1, 2) are given by

z1z
−1
2 z3(1− z−1

1 )(1− z−1
2 )−2(1− z−1

3 ) = 1

z−1
1 z−1

3 (1− z−1
2 )2 = 1

ML2 = (z−1
1 (1− z−1

2 ))(z2
1(1− z−1

1 )−3z2(1− z−1
2 )−2(1− z−1

3 ))2 = 1

(1.103)

This has solutions, (which can be computed for example with Mathematica [101])

0 = 1− 7z1 + 21z2
1 − 29z3

1 + 4z4
1 + 41z5

1 − 36z6
1 − 40z7

1 + 101z8
1 − 81z9

1 + 29z10
1 − 4z11

1 + z12
1

z2 =
1

809
(−8072 + 44732z1 − 81810z2

1 + 22655z3
1 + 115415z4

1 − 112614z5
1 − 100341z6

1

+ 254285z7
1 − 185366z8

1 + 56695z9
1 − 8819z10

1 + 1811z11
1 )

z3 =
1

809
(−3693 + 25399z1 − 62740z2

1 + 47520z3
1 + 65783z4

1 − 129841z5
1 − 25478z6

1

+ 206416z7
1 − 179494z8

1 + 48283z9
1 − 8593z10

1 + 1527z11
1 )

(1.104)
Then taking the solution (the third in PARI/GP indexing) with z1 = −0.72561 · · ·−0.32484 · · · i
we find that

p1 =
15

7
p3 −

8

7
q2 +

16

7
q3 +

12

7
, q1 = −11

7
p3 +

11

7
q2 −

15

7
q3 +

1

7
,

p2 = −11

7
p3 −

3

7
q2 −

8

7
q3 −

13

7
.

(1.105)

These have the potential to not be integers. However, there are additional parity parame-
ters [145, Def. 4.3], which restrict the allowed values of pj, qj. However, ignoring this we find
the same elements up to two torsion [145, Lem. 11.3], so we can choose integral solutions
to get the element up to two torsion. For example,

p1 = 4 , q1 = −3 , p2 = −1 , q2 = −2 , p3 = 0 , q3 = 0 . (1.106)
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1.15 Complexified volumes using scissors

We have been discussing abstractly some of the structures behind the geometry of three–
manifolds but lets take a step back. Given a geometric manifold it is interesting to see
whether you can compute its volume. A natural way to do this is by breaking the manifold
into simpler pieces, calculating their volumes, and summing them up. Of course, calculating
volume is a local calculation. The theory we have been building up over the last sections gives
us the tools to do this. Given an ideal triangulation and the unique solution to the gluing
equations giving the complete hyperbolic structure, coming from the Mostow-Prasad Theo-
rem 7, we find that we simply sum the contributions from each tetrahedra using Theorem 8.
We already did this in the Example 5. We can go one step further and use the extended
Bloch group to not only compute volumes but also to compute complexified volumes i.e. the
Cheeger–Chern–Simons invariant.

The first thing to note is that the 2–3 Pachner move indicates a consequence for the volumes.
In particular, we get the following theorem due originally due to Spence.

Theorem A–12 (5–term relation). Let x, y ∈ C then

Vol(∆x) + Vol
(
∆ y

x

)
+ Vol

(
∆ 1−x

1−y

)
= Vol(∆y) + Vol

(
∆ 1−x−1

1−y−1

)
(1.107)

or for the Bloch–Wigner dilogarithm in equation (1.26)

D(x)−D(y) +D

(
y

x

)
−D

(
1− x−1

1− y−1

)
+D

(
1− x
1− y

)
= 0 . (1.108)

The relations in the Bloch group, and its extended version, exactly fit the geometry of ideal
tetrahedra. This theorem of course has the following consequence for the Bloch group.

Corollary 1. The Bloch–Wigner dilogarithm given in equation (1.26) gives a homomorphism
from the Bloch group to R via

D : B(C)→ R s.t. D([z]) = D(z) . (1.109)

We can use this to compute volumes of three–manifolds and check non-triviality of elements
of the Bloch group.

Example 9 (Bloch–Wigner dilogarithms for calculating volumes and non-triviality). Con-
sider the elements we constructed for the knots 41, 52 and the closed manifold 52(1, 2) in
equations (1.50) (1.55) (1.104). In particular, we find that for 41

2[e2πi/6] 7→ 2D(e2πi/6) = 2.0299 · · · = Vol(S3 − 41) , (1.110)
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for 52 with z3
1 − 2z2

1 + 3z1 − 1 with z1 = 0.78492 · · ·+ 1.3071 · · · i we find

2[z1] + [z2
1 − z1 + 2] 7→ 2D(z1) +D(z2

1 − z1 + 2) = 2.8281 · · · = Vol(S3 − 52) , (1.111)

and for 52(1, 2) with z1, z2, z3 given in equation (1.104) with embeddings

z1 = 0.29858 · · ·+ 4.7288 · · · i ,
z2 = −0.031108 · · ·+ 0.55397 · · · i ,
z3 = 0.80772 · · ·+ 0.47941 · · · i ,

(1.112)

we find that

[z1] + [z2] + [z3] 7→ D(z1) +D(z2) +D(z3) = 2.2267 · · · = Vol(52(1, 2)) . (1.113)

Therefore, all of these elements are non–trivial in the Bloch group as they don’t vanish under
this homomorphism. Consequentially, this implies they are non–torsion in K–theory.

As mentioned, we can use the extended Bloch group to calculate the complexified volume.
To do this, let

R(z; p, q) =
1

2
log(z) log(1−z)−

∫ z

0

log(1− t)dt
t

+
πi

2
(p log(1−z)+q log(z))− π

2

6
. (1.114)

Then, R is a well defined map from Ĉ → C/π2Z. Moreover, R satisfies the relations given
by the generators of F̂ . Therefore, this induces a homomorphism

R : B̂(C)→ C/π2Z s.t. R([z; p, q]) = R(z; p, q) . (1.115)

The Cheeger–Chern–Simons class gives a map

CS : Hgrp
3 (PSL2(C),Z)→ C/π2 . (1.116)

Then Neumann [145, Thm. 2.6] proves the following theorem.

Theorem A–13. There is an isomorphism

λ : Hgrp
3 (PSL2(C),Z) ∼= B̂(C) (1.117)

such that
CS(γ) = R(λ(γ)) . (1.118)

See Neumann [145, Sec. 15] for an example with the figure eight knot. Also see [80] for a
discussion of how this generalises to SLN(C). We will continue our other examples.
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Example 10 (Complexified volumes for 52 and 52(1, 2)). Now with our elements of the
extended Bloch group given in Example 7 and Example 8 we can calculate their associated
complexified volumes. So taking the elements z(k)

j and their flattening p(k)
j from Example 7

we have

R(z
(3)
1 ; p

(3)
3 , q

(3)
3 ) +R(z

(3)
2 ;−2p

(3)
3 − 2q

(3)
3 − 2, p

(3)
3 + 2q

(3)
3 + 1) +R(z

(3)
3 ; p

(3)
3 , q

(3)
3 )

= −π2q
(3)
3 − 6.8455 · · ·+ 2.8281 · · · i = VCρ3(52)

R(z
(1)
1 ; p

(3)
3 , q

(3)
3 ) +R(z

(1)
2 ;−2p

(3)
3 − 2q

(3)
3 , p

(3)
3 + 2q

(3)
3 + 1,−1) +R(z

(1)
3 ; p

(3)
3 , q

(3)
3 )

= π2p
(3)
3 + π2q

(3)
3 − 1.1135 · · · = VCρ1(52)

(1.119)

We find, for the element given in Example 8 by z1 = −0.72561 · · · − 0.32484 · · · i, with its
flattening, that

R
(
z1,

15

7
p3 −

8

7
q2 +

16

7
q3 +

12

7
,−11

7
p3 +

11

7
q2 −

15

7
q3 +

1

7

)
+R

(
z2,−

11

7
p3 −

3

7
q2 −

8

7
q3 −

13

7
, q2

)
+R(z3, p3, q3)

=
π2

2
q2 −

3π2

2
p3 − 2π2q3 − 11.995 · · · = VCρ1(52(1, 2))

(1.120)

Notice that without keeping track of the parity, as mentioned, this only gives an element up
to π2/2. The example for 52 can be computed using the PARI/GP [20] Code 7.

Now for cusped manifolds these computations are in fact implemented in SnapPy [43] in
Sage [182]. However, these can differ by multiples of π2/6. This is given in Code 8.



Chapter 2

Quantum invariants of three manifolds

In the previous sections, I have given various descriptions of three–manifolds and their asso-
ciated geometries. In particular, we studied flat SL2(C)–connections and how they relate to
hyperbolic structures. This section should correspond to a quantisation of this theory. While
this is a well defined procedure in more finite dimensional settings, here we want to make
some sense of some kind of gauge theory associated to SL2(C) connections. Originally, after
the discovery by Jones [103, 104] of a new invariant of knots, Witten introduced an SU(2)
version of this theory [195]. From Witten’s path integral, he could derive enough relations
to determine the theory from some small initial data. This was then mathematically con-
structed and shown to be truly invariant by Reshetikhin–Turaev soon after [166, 167]. From
the physical side the extension to SL2(C) was studied by Witten [196, 197] and Gukov [91]
however there is still no definition of this theory or enough conditions to compute it. There
have been many constructions, which hope to give a definition of this theory and prove
invariance à la Reshetikhin–Turaev. For example, Hikhami [98] introduced state integrals,
which were then studied by Dimofte, Garoufalidis, Gukov, Lennels, and Zagier in [49, 45, 47].
These integrals lacked a precise contour, so could only give rise to asymptotics. This contour
was then specified by Andersen–Kashaev [8, 7, 9] giving rise to invariants of cusped manifolds
with certain triangulations.

While mathematical theories were constructed, there are certain properties that one would
expect from physics that are not clear from their mathematical definition. In particular,
these theories are expected to have certain asymptotic behaviour as we vary an analogue of ~.
These properties then become conjectures and apart from a handful of cases these conjecture
remain mostly open. There is substantial numerical evidence to support them on top of the
physical intuition. The first is know as Witten’s asymptotic expansion conjecture [195],
which has to do with invariants of closed manifolds and SU(2) connections. Next came
Kashaev’s volume conjecture [108, 138], which implies that certain quantum invariants can
compute the hyperbolic volume of hyperbolic links. More recently, Chan–Yang introduced
a volume conjecture for closed manifolds [38]. These conjectures are all of one class, which

101
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will be somewhat unified in the later Section 8.3.

These asymptotic properties have driven much of the research over he past decade in hopes of
constructing a mathematical theory. The closest construction we have is that of Andersen–
Kashaev. Unfortunately, their theory does not encode any information about the trivial
connection in the asymptotics, which from physics, would be required to make a fully fledged
TQFT. Over the course of the work on this thesis there has been hints at extensions of this
theory will, which be discussed in later sections 6.5 and 10.2 using the work of [70].

2.1 From the Alexander polynomial to the Jones polyno-
mial

In the 1920s Alexander [2] constructed polynomial invariants of knots in the three sphere.
Alexander considered the infinite cyclic cover, which can be explicitly constructed by cutting
along a Seifert surface and gluing Z copies along two boundaries of the surface. One can think
of Z copies of the knot complement with two way portals connecting the knot complement
indexed by k to the copies indexed by k± 1. The generator of the covering transformations,
say x, then acts on the homology of this space giving a Z[x±]–module. This module is finitely
presented and its order ideal1 is principle. Taking this generator, appropriately normalised,
gives the Alexander polynomial2 denoted for a knot K by ∆K(x).

This definition gives a completely three–dimensional description of the Alexander polynomial
but is computationally a little difficult to work with. Around 1970 Conway [41] introduced
a new way to calculate the Alexander polynomial. Consider three oriented links L± and
L0 that have the same link diagram away from one crossing where they differ as shown in
Figure 2.1. Alexander proved the following relation for his polynomial called a Skein relation.

∆L+(x)−∆L−(x) = (x1/2 − x−1/2)∆L0(x) . (2.1)

Conway showed that fixing the value of the Alexander polynomial on the unknot ∆O(x) = 1,
and imposing the Skein relation, uniquely determined the Alexander polynomial. We give
an example of the computation of the Alexander polynomial for unlinked unions of unknots
in Figure 2.3 and of the trefoil and figure eight knot in Figure 2.2. If L is an oriented link
and L represents the mirror, then

∆L(x) = ∆L(x−1) = ∆L(x) . (2.2)

1This ideal is defined by taking the presentation in matrix form over Z[x±] and taking the ideal generated
by the minors of this matrix.

2See [123, 174] for a more detailed introduction and [33, Ch. 9][134, Ch. 12] for a generalisation to links
where we have multivariable polynomials, one variable for each component.
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Figure 2.1: Three links L+, L−, L0 with the same diagram away from one crossing. These
local difference are related to skein relations.

Therefore, the Alexander polynomial does not detect the difference between mirrors. After
Alexander’s polynomial no new polynomial invariants of knots were introduced until the
1980s. In [103, 104], Jones discovered a surprising new invariant of oriented links. One
important difference is that this polynomial invariant can detect the difference between
mirror knots. Jones discovered the construction when studying von Neumann algebras that
led to braid group representations. Taking the trace of these representations leads to these
new oriented link invariants. We hinted at similar constructions art the end of Section 1.2.

Jones showed that his polynomial can also be defined via a recursion almost identical to
Conway’s contruction of the Alexander polynomial. Let L+, L− and L0 three link diagrams
the same everywhere except one crossing and at this crossing their differences are depicted
in Figure 2.1 as before. Then, to define the Jones polynomial, we take as initial condition
J2(O; q) = 1, where O is the unknot, and insist the following relation

q J2(L+; q)− q−1J2(L−; q) = (q1/2 − q−1/2) J2(L0; q) . (2.3)

This is almost identical with the relation in equation (2.1) but surprisingly also leads to an
invariant. Perhaps more surprising is that this invariant is of a very different nature.

Example 11. We can take a disjoint union of unlinked unknots as shown in Figure 2.3 and
calculate its Jones invariant. We can use this recursion to calculate the Jones polynomial of
the trefoil and figure eight knot as shown in Figure 2.4. We find that
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Figure 2.2: Calculation of the Alexander polynomial of the trefoil and the figure eight knot
via skein relations where we also use Figure 2.4.
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Figure 2.3: Calculation of the Alexander polynomial and Jones polynomial of disjoint union
of unlinked unknots.

J2(31; q) = −q4 + q3 + q , and J2(41; q) = q2 − q + 1− q−1 + q−2. (2.4)

Notice that J2(41; q) = J2(41; q−1), which follows from the fact that 41 is amphichiral while
J2(31; q) 6= J2(31; q−1) proving that it is not.

This seemingly simple definition, that could be explained to a high school student, con-
tains surprisingly deep consequences. Currently, we only described the Jones polynomial
by diagrams. In the late 1980s, Atiyah asked whether one could give a three dimensional
construction of this invariant. The answer was famously given by Witten using quantum
field theory [195]. See also [11]. To give his answer requires a detour into physics.

2.2 Some physical intuition

In physics everything is determined from the Lagrangian. Witten [195] considers the Chern–
Simons functional described in Section 1.13 as a Lagrangian and takes a compact gauge
group. We will mainly consider gauge group SU(N) and most importantly SU(2). Then, to
understand the quantum theory associated to this Lagrangian he integrates over the space
of states, in this case the space of connections. Unfortunately, making sense of this integral
is quite a task. However, one can use it as a source of intuition, and, importantly, a tool
that can be used to construct invariants mathematically. Let M be a closed three–manifold,
then Witten takes

Z(M ; ~) “ = ”

∫
AM×SU(N)/GM×SU(N)

exp
(CS(A)

2πi~

)
DA . (2.5)

Even physically this only makes sense when 1/~ ∈ Z as CS is only defined up to gauge by
elements of 4π2Z. Therefore, Witten’s interpretation here is restricted to this case. The
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Figure 2.4: Calculation of the Jones polynomial of the trefoil and the figure eight knot via
skein relations.
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Figure 2.5: Manifold with corners given by the four circles on the sphere.

way one could try to define such an integral is decompose the manifold into small pieces and
consider only classical solutions on these pieces with some boundary conditions. The integral
may then be over a finite dimensional space. Performing this over finer and finer decomposi-
tions should give back the desired integral in the limit. This indicates that understanding the
spaces of classical solutions on the boundary is important. Given a manifold with boundary
and taking a vector space generated by appropriate boundary conditions turns these inte-
grals into linear maps between these vector spaces of boundary conditions. Moreover, these
spaces are representations under the action of their mapping class group. Before describing
the theory on the boundary it is important to include links inside our three–manifolds. This
can also be interpreted as allowing manifolds with corners as depicted in Figure 2.5. Then
our boundaries will correspond to curves with marked points or with boundary themselves.

In Chern–Simons theory, the space of classical solutions on the boundary are flat SU(N)
connections, which corresponds to the character variety as shown in equation (1.79). The
moduli space with marked points or boundaries is the same with some choice of holonomy
around the marked points. The moduli space of flat SU(N) connections on a surface has a
canonical symplectic form [12]. This moduli space is compact so the classical quantisation
of the cotanget bundle, which is of course non-compact, won’t work. To quantise this space
Witten introduces an auxiliary complex structure. This gives the moduli space a Kähler
structure. One can then perform geometric quantisation. This gives a vector space for each
complex structure, which varies holomorphically and therefore gives rise to bundle on the
moduli space of complex structures. For this to be independent of the complex structure
requires the bundle to be flat. This description also came up in Segal’s work on conformal
field theory [175], which leads to the spaces of conformal blocks. Therefore, Witten argues
that this quantisation of the three dimensional Chern–Simons theory on the boundary should
be given by a space of conformal blocks. This space is algebro–geometrically described as
non–abelian θ–functions associated to the group, which for us is SU(N). The dimension is
given by the Verlinde formula [190], which Witten re-derives from his methods. Around the
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Figure 2.6: Three dimensional version of the skein relations as a ball with marked points on
the boundary connected by embedded arcs.

marked points the quantisation leads to spaces of representations. In particular, choosing
representations of SU(N) at each marked point gives rise a space of conformal blocks3.
Importantly, the space associated to the sphere with four marked points labelled by two
fundamental representation and two of its conjugate is two dimensional.

With this framework Witten studies the three–manifolds that correspond to the local moves
in the Skein relation. These are given by the manifolds M+,M−,M0 as shown in Fig-
ure 2.6. Labelling the incoming points via the fundamental representation ρ of SU(N) and
the outgoing by its conjugate, these manifolds give elements, Z(M+; ~), Z(M−; ~), Z(M0; ~) ∈
Z(S2, ρ, ρ, ρ, ρ; ~), of the vector space associated to the sphere with four marked points la-
belled the representations and their conjugates. As we mentioned this space is two dimen-
sional and therefore there must be a relation

αZ(M+; ~) + βZ(M−; ~) + γZ(M0; ~) = 0 . (2.6)

Witten goes on to use some physical arguments from work of Moore and Seiberg [133] to
state that for the fundamental representation ρN of SU(N) we should have

qN/2Z(M+; ~)− q−N/2Z(M−; ~) = (q1/2 − q−1/2)Z(M0; ~) , (2.7)

where q = exp(2πi/(N + 1/~)). Therefore, we see that taking the standard representation of
SU(2) leads to the same skein relation that determined the Jones polynomial (2.3) at roots of
unity. The larger family of invariants can be stored in the HOMFLY-PT polynomial [63, 161].
This example was also discussed in [185].

3This structure linear maps valued in the category of vector spaces leads naturally to higher categories
and this field theory can be described as an extended field theory when using these structures and manifolds
with corners.
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Assuming Witten’s ideas make sense, there should be some invariants associated to closed
3–manifolds and that these should be computable by applying surgery on links as discussed
in Section 1.3. The vector space associated to the torus is generated by the irreducible
representations of the loop group LSU(N) at level 1/~, which are in canonical bijection with
some subset of representations of SU(N). In the case of SU(2) there are exactly 1/~ many
representations. Taking contractions of vectors in the vector space should then give rise to
invariants of closed three–manifolds.

Finally, it is important to note that Witten suggested [197] a method to deform the parameter
~ to be any number in C. This involves integrating over a “half dimensional” cycle in
AM×SLN (C)/GM×SLN (C) of the same kind as in equation (2.5). This extension has still not
been fully mathematically defined when ~ /∈ Q. This is also related to the study of Chern–
Simons theory with gauge group SL2(C) given for example in [91, 196, 47].

2.3 The Coloured Jones polynomial

The coloured Jones polynomial is defined as a sequence of polynomials associated to ori-
ented framed links. They are defined most naturally through representations of the braid
group [185]. Many interesting examples come from quantum groups associated to simple
Lie algebras as introduced by Drinfel’d. More generally, to any ribbon Hopf algebra one
gets a functor from the cobordism category of ribbon graphs to the category of representa-
tions of the algebra [166]. This is similar to the kind of result discussed in [116]. In [185],
Turaev introduced sufficient algebraic data needed to define link invariants via braid group
representations.

Definition 7 (Enhanced Yang-Baxter operator [185]). Let V be an N dimensional vector
space over C, R : V ⊗V ∼= V ⊗V , µ : V ∼= V , and a, b ∈ C. Then (R, µ, a, b) is an enhanced
Yang-Baxter operator if it satisfies

(R⊗ IdV )(IdV ⊗R)(R⊗ IdV ) = (IdV ⊗R)(R⊗ IdV )(IdV ⊗R) (2.8a)
R(µ⊗ µ) = (µ⊗ µ)R (2.8b)

Tr2(R±(IdV ⊗ µ)) = a±bIdV (2.8c)

where Trk : End(V ⊗k)→ End(V ⊗(k−1)) such that for f ∈ End(V ⊗k) and ei a basis of V with
f(eI) =

∑
J f

J
I eJ we have Trk(f)(eI) =

∑
J,j f

J,j
I,j eJ .

The main example of an enhanced Yang–Baxter operator we will take comes from Uq(sl2).
This ribbon Hopf algebra gives an enhanced Yang–Baxter operator, which comes from the
associated universal R–matrix and its irreducible representations. If q is an r-th root of unity,
then the irreducible representations of dimension 1, . . . , r − 1 of sl2 have a corresponding
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irreducible representation for Uq(sl2). See [113] for a discussion on Uq(sl2) and for the
following explicit expression4 see [112, Cor. 2.32, Def. 2.35, Lem. 2.36, Thm. 3.24].

Theorem A–14 (R-matrix for sl2). Let m,n ∈ 1
2
Z>0, R : Vn ⊗ Vm → Vm ⊗ Vn where

Vm = Span{e−m, e−m+1, · · · , em−1, em}, Vn = Span{e−n, e−n+1, · · · , en−1, en}, such that

R(ek ⊗ e`) =
m∑

i=−m

n∑
j=−n

min(m−i,j+n)∑
p=0

δ`,i+pδk+p,j

× (−1)pqij−
p
2

(m+n)−(i−j)p−p(p+1)/2 (q; q)m+`(q; q)n−k
(q; q)m+i(q; q)p(q; q)n−j

ei ⊗ ej .
(2.9)

and µ : Vn → Vn such that µ(ej) = qjej. Then (R, µ, qn(n+1), 1) is an enhanced Yang–Baxter
operator when restricted to Vn for some n. More generally, this gives a representation of a
ribbon Hopf algebra associated to Uq(sl2).

Lemma 1. The inverse of the R matrix in Theorem 14 is given explicitly by

R−1(ek ⊗ e`) =
m∑

i=−m

n∑
j=−n

min(m−i,j+n)∑
p=0

δ`,i−pδk−p,j

× q−ij− p2 (m+n) (q; q)m−`(q; q)n+k

(q; q)m−i(q; q)p(q; q)n+j

ei ⊗ ej .
(2.10)

Proof. This can be explicitly proved using the q–binomial theorem

(t; q)n =
n∑
k=0

(−1)kqk(k−1)/2

(
n

k

)
q

tk . (2.11)

We have some function f such that

R−1R(ek ⊗ e`) =
∑
p,r

(−1)pqp(p−1)/2

(q; q)p(q; q)r
f(p+ r) . =

∑
s

s∑
p=0

(−1)pqp(p−1)/2

(
s

p

)
q

f(s)

(q; q)s
. (2.12)

Therefore, this gives a non-zero contribution to the sum only when s = p+r = 0. Therefore,

R−1R(ek ⊗ e`) = q`k
(q; q)m+`(q; q)n−k
(q; q)m+`(q; q)n−k

q−k`
(q; q)n+k(q; q)m−`
(q; q)n+k(q; q)m−`

ek ⊗ e` = ek ⊗ e` (2.13)

Then with this example in mind, we have the following theorem.
4This is the transpose of what is given in [112].
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Figure 2.7: The local pieces of a tangle and the corresponding elements of the representations
leading to the coloured Jones polynomial of a link.

Theorem A–15. [185, Thm. 3.1.2] If (R, µ, a, b) is an enhanced Yang–Baxter operator,
then we get a representation of the braid group, given in definition 2, by

ρn : Bn → End(V ⊗n, V ⊗n) s.t. ρ(σi) = IdV
1
⊗ · · ·
···
⊗ R

i, i+1
⊗ · · ·
···
⊗ IdV

n
(2.14)

and
σ 7→ a−w(σ)b−nTr1(· · ·Trk(σ ⊗ µ⊗ · · · ⊗ µ) · · · ) (2.15)

is invariant under the Markov moves given in Theorem 2.

For a knot, the assignment in Theorem 15 with enhanced Yang–Baxter operator given in
Theorem 14 gives the coloured Jones polynomial, which we denote J̃N(K; q) where the colour
N represents the N -dimensional irreducible representation of sl2. This theorem is all we need
to define invariants of knots. It also defines an invariant of links, however, all components will
be treated the same. Therefore, we want generalise this construction to label each component
of the braid with a different representation. To do this, one needs to introduce more algebraic
structures associated to tangles or ribbon graphs. For these details consult [166, 167, 112,
187, 149]. We will summarise what we need in the following theorem.

Theorem A–16. [167, Thm. 2.5][112, Thm. 3.6] A ribbon Hopf algebra associates unique
invariants of links. In particular, gluing together the local pictures in Figure 2.7 with the
following operators

• R : Vn ⊗ Vm → Vm ⊗ Vn given in Theorem 14 ,

• µ : Vn → Vn given in Theorem 14 ,

• E : V ∗n ⊗ Vn → C such that E(f ⊗ x) = f(x) ,

• Eµ : Vn ⊗ V ∗n → C such that Eµ(x⊗ f) = f(µ(x)) ,

• F : C→ Vn ⊗ V ∗n such that F (1) =
∑n

i=−n ei ⊗ ei ,
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Figure 2.8: The operator associated to a local change in the framing.

• and Fµ−1 : C→ V ∗n ⊗ Vn such that F (1) =
∑n

i=−n e
i ⊗ µ−1(ei) ,

gives an invariant of oriented framed links, where each component is coloured by a represen-
tation Vn.

Blind computations, while they can be done, lead to very large dimensional sums. There are
some tricks that can be used to simplify the computations. Firstly, for a knot, we can cut
and have a start and an end which needs to be glued. When cut, this gives a map between
irreducible representations and therefore, from Schur’s lemma, a constant. This constant
then has a simple relation to the value of the invariant. Secondly, notice that the sum of the
indices the R matrix takes in is the same as the sum of the indices it spits out. Therefore, we
can reduce the calculations of the contraction of these operators, by considering the possible
non-zero indices at each crossing. These tricks are discussed in [137]. This method was
taught to me by Stavros Garoufalidis who gave me the useful mnemonic, which I’m probably
paraphrasing: “you enter with nothing; at each crossing, the strand above must pay a tax to
the lower; you leave with nothing”. For this to work, we need to take a different labelling set
for a basis of Vn by fi = ei−n. Then this basis is labelled f0, . . . f2n. Let the various operators
have indices in relation to this basis for example R(fk ⊗ f`) =

∑2n
i=0

∑2m
j=0 R

i,j
k,`fi ⊗ fj. We

can use this to see how altering the framing affects the coloured Jones polynomial.

Lemma 2. [112, Lem. 3.27] If L is a framed link and we alter the framing of the i-th
component by ±1 to a framed link L(±) the coloured Jones polynomials for colour N = 2n+1
are related by

J̃N(L(±); q) = q±(N2
i −1)/4J̃N(L; q) . (2.16)

Proof. Notice that altering the framing corresponds to adding a kink of the form of Reide-
meister I in Figure 1.3 into a diagram at some point of that component. We can calculate
locally how this affects the operator as shown in Figure 2.8 when we shift that framing by
−1. Therefore, we see that this local operator acts via multiplication by

(R−1)0,0
0,0µ

0
0 = q−(−n)2

q−n = q−n(n+1) = q−(N2−1)/4 . (2.17)
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Figure 2.9: Calculation of the quantum invariant associated to 41 as a tangle.

Therefore, putting this into the full operator shows that the coloured Jones in simply mul-
tiplied by this. This also implies the change in framing by +1 as this is an inverse opera-
tion.

Example 12 (Figure eight knot). [137, Ex. 2.5][124, 93] From Figure 2.9, we can calculate
the endomorphism associated to this tangle. The Figure 2.9 and Schur’s lemma shows this
tangle acts the following way

fk 7→ fk
∑
i,j

µjjR
i,0
0,i(R

−1)i,ji+j,0R
0,i+j
i,j (R−1)0,j

j,0(µ−1)ii . (2.18)

When substituting in the expressions5 from Theorem 14, this endomorphism is then given by

5Note of course the shift of the indices due to the change of indexing of the basis ei−n = fi.
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Figure 2.10: The closure of the quantum invariant associate to 41.

multiplication by

i+j≤2n∑
0≤i,j≤2n

(−1)jq−(2n+1)i+j(j+1)/2 (q; q)i+j(q; q)2n

(q; q)i(q; q)j(q; q)2n−i−j

=
2n∑
k=0

q−(2n+1)k (q; q)2n

(q; q)2n−k

k∑
j=0

(−1)jq(2n+1)j+j(j+1)/2 (q; q)k
(q; q)j(q; q)k−j

=
2n∑
k=0

q−(2n+1)k (q; q)2n

(q; q)2n−k
(q2n+2; q)k =

1

1− q2n+1

2n∑
k=0

q−(2n+1)k (q; q)2n+1+k

(q; q)2n−k
,

(2.19)

where the second last equality follows from the q–binomial theorem shown previously in equa-
tion (2.11). Therefore, as 2n + 1 = N is the dimension of the representation and including
the final trace shown in Figure 2.10 we find that

J̃N(41; q) =
q−(N−1)/2

1− q
N−1∑
k=0

q−Nk
(q; q)N+k

(q; q)N−1−k
. (2.20)

Using techniques discussed in Section 5.6 this can be shown to be equal to

J̃N(41; q) =
qN/2 − q−N/2
q1/2 − q−1/2

N−1∑
k=0

q−kN(qN−1; q−1)k(q
N+1; q)k . (2.21)

Notice that with this diagram the knot has the 0–framing.
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Remark 5. There are two main normalisations for the coloured Jones polynomial in the
literature. The one given here is often called the TQFT normalisation. However, the coloured
Jones polynomial is often also used as

JN(41; q) =
q1/2 − q−1/2

qN/2 − q−N/2 J̃N(41; q) . (2.22)

This then corresponds to endomorphisms like the one that we discussed in Figure 2.9.

The form of the coloured Jones polynomial in equation (2.21) is extremely nice. We can lift
this to an infinite sum as all but finitely many terms will be non-zero

JN(41; q) =
∞∑
k=0

(−1)kq−k(k+1)/2(q1−N ; q)k(q
1+N ; q)k . (2.23)

This type of expansion for knots turns out to be quite general. We have the following general
theorem of Habiro.

Theorem A–17 (Cyclotomic expansion). [95, Thm. 2.1][96, Thm. 4.5] For a knot K,
there exists unique Ck(K; q) ∈ Z[q±1] such that the coloured Jones polynomial of K with the
0–framing is given by

JN(K; q) =
∞∑
k=0

Ck(K; q)(q1+N ; q)k(q
1−N ; q)k . (2.24)

The uniqueness comes as this is essentially a change of basis. Indeed, from [96, Lem. 6.1]
we have

Ck(K; q) =
k+1∑
N=1

γk,N(q)J̃N(K; q) . (2.25)

where

γk,N(q) = (−1)N+1 q
−k+N(N−3)/2+1(1− qN)(1− q2N)

(q; q)k+N+1(q; q)k−N+1

. (2.26)

Using this form, Masbaum computes the cyclotomic polynomials for all twist knots.

Example 13 (Coloured Jones polynomial of twist knots). [129, 100] The p–th twist knots
Kp are depicted in Figure 2.11. For p > 0, the cyclotomic polynomial of the p-th twist knot
is given by

Ck(Kp; q) = qk
∑

0≤s1≤s2≤···≤sp=k

p−1∏
i=1

qsi(si+1)

(
si+1

si

)
q

, (2.27)
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Figure 2.11: Twist knots and examples of K1 = 31 and K−1 = 41.

and for p < 0 the cyclotomic polynomial of the p-th twist knot is given by

Ck(Kp; q) = (−1)kq−k(k+1)/2
∑

0≤s1≤s2≤···≤s|p|=k

|p|−1∏
i=1

q−si(si+1)

(
si+1

si

)
q−1

. (2.28)

In particular,
Ck(K1; q) = Ck(31; q) = qk ,

Ck(K−1; q) = Ck(41; q) = (−1)kq−k(k+1)/2 .
(2.29)

Notice, moreover, that in agreement with Example 11 we have

J2(31; q) = −q4 + q3 + q , and J2(41; q) = q2 − q + 1− q−1 + q−2. (2.30)

There are many interesting properties of the coloured Jones polynomial. For instance, one
can compute it completely from the Jones polynomial and cabellings of the original link [112,
Thm. 4.15]. This allows a completely skein theoretic analysis. However, there is a much
easier way to compute the coloured Jones polynomials if one can compute for a few colours
with some additional information. This was realised much later for example in [91, 66]. Via
an application of the theory of Zeilberger [209, 194] on q–hypergeometric sums, Garoufalidis–
Lê [77] prove the following theorem.

Theorem A–18. [77, Thm. 1] If K is a knot then there exists r ∈ Z>0 and aKk (x; q) ∈
Z[x±1, q±1/4] such that

r∑
k=0

aKk (qN ; q)JKN+k(q) = 0 . (2.31)
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This can be put into an operator form where (σJ)N = JN+1 and (xJ)N = qNJN and then( r∑
k=0

aKk (x; q)σk
)
JK = 0 . (2.32)

An operator equation that is minimal is called an Â–polynomial. The computation of such
recursions is implemented in the Mathematica package [168]. Examples of computations can
be found in [77, Sec. 6]. This can then be extended to all links stating that the coloured
Jones polynomial is q–holonomic. See [77, Thm. 3]. This means that it satisfies a system
of equations in shifts in the colours determined by some finite initial values. These kind of
equations will be fundamental to this thesis and will be discussed in more detail in part III.

Example 14 (Â–polynomial for 41). The coloured Jones polynomial for the figure eight knot
given in equation (2.23) satisfies the following inhomogenous recursion

JN+1(q) = q−N
(1 + qN)(1− q2N+1)

1− qN+1

− q−2N (qN − 1)2(qN + 1)(q4N+1 − q3N+1 − q2N+2 − q2N − qN+1 + q)

(1− qN+1)(q2N − q) JN(q)

− 1− q2N+1

1− q2N−1

1− qN−1

1− qN+1
JN−1(q) .

(2.33)
This recursion can of course be homogenised by dividing by q−N (1+qN )(1−q2N+1)

1−qN+1 and then acting
by (σ − 1) on the left.

The reason that this operator is called the Â–polynomial is that it is expected to give the
A–polynomial as a specialisation that should correspond to taking a classical limit.

Conjecture 1 (AJ conjecture). [66, 91] If K is a knot then the Â–polynomial specialised
with x = m2, σ = `, q = 1 gives the A-polynomial of the knot.

Remark 6. This specialisation is well defined. Noting that σx = qxσ, these operators can
be specialised to commuting variables when q = 1.

Example 15 (AJ conjecture for 41). Taking the specialisation the homogenous part of the
operator in equation (2.33) gives

`− (m−4 −m−2 − 2−m2 +m4) + `−1 = 0 . (2.34)

When the inhomogenous recursion in equation (2.33) is homogenised we get an additional
factor of (`− 1), which agrees with what we previously gave in Example 2.

Remark 7. Often the “abelian factor” of the A–polynomial (`−1) appears as a factor on the
left of the Â–polynomial. This gives rise to inhomogenous recursions for the coloured Jones
polynomials in many examples.
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2.4 The Witten–Reshetikhin–Turaev invariants
FollowingWitten’s ideas, Reshetikhin–Turaev took sums over the coloured Jones polynomials
evaluated at roots of unity to define invariants of closed three–manifolds. They do this
by representing closed manifolds via Dehn surgery on links, which can always be done by
Theorem 4. They then sum over all colours of the coloured Jones polynomial multiplied by
a kernel that represents the quantum invariants of the solid tori, which are to be glued into
the link complement. The invariant of the solid torus is a quantum dimension associated
to the representation of Uq(sl2). They then used Kirby calculus, discussed in Theorem 5,
to prove that these averages are invariant under the Kirby moves, hence proving they are
invariants of three–manifolds.

Definition 8 (Witten–Reshetikhin–Turaev invariant). [167, 112] The sl2 Witten–Reshetikhin–
Turaev6 (WRT) invariant of a closed 3–manifold M , represented by a framed link L with `
components and the difference between the number of positive and negative eigenvalues of its
linking matrix given by σL, evaluated at q1/4 = e(a/4c), is given by

X(M ; q) =

(
2e(−1/8)(q1/2 − q−1/2)∑4c

k=1 q
k2/4

)`
e
(−3σL

8

)
q

3σL
4

×
c−1∑

N1,··· ,N`=1

J̃N1,··· ,N`(L; q)
∏̀
j=1

qNj/2 − q−Nj/2
q1/2 − q−1/2

(2.35)

Theorem A–19. [167] (See also [112]) X(M ; q) is a topological invariant of M .

We will sketch some aspects of the proof below in Theorem 1. Firstly, we will give some
nice examples with simple formulae. Using the cyclotomic expansion given in Theorem 17,
Beliakova–Lê [24] give a formula for the WRT invariant of a manifold obtained by rational
surgery based on Laplace transform methods developed in [22].

Example 16. [24, Thm. 7 and Cor. 5.1][100, Sec. 1] Given a knot K then

(1− q)X(K(−1, b); q) =
∞∑
kb=0

Ckb(K; q)(qkb+1; q)kb+1

∑
0≤k1≤k2≤···≤kb

b−1∏
j=1

qkj(kj+1)

(
kj+1

kj

)
q

.

(2.36)
For example,

(1− q)X(41(−1, 2); q) =
∞∑
k=0

(−1)kq−k(k+1)/2(qk+1; q)k+1

∑
0≤`≤k

q`(`+1)

(
k

`

)
q

. (2.37)

This expression makes it clear that these invariants are not just functions from fourth roots of
roots of unity to their cyclotomic fields but elements of the Habiro ring defined in Section 5.8.

6I have chosen to denote by X pronounced “Sha”.
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The fact the coloured Jones polynomial satisfies a q–difference equation is of such funda-
mental importance to the perspectives of this thesis it is natural to ask whether there is
some natural sequence that the WRT invariant of a closed manifold fits into that satisfies
a difference equation. For a closed 3–manifold there are no boundary components, so it
seems less natural. However, the WRT invariant is part of a family, indexed by q1/4, of
TQFTs [10, 11] and this gives it more structure than just a function from roots of unity. In
particular, if Z : Cobn+1 → VectC is a TQFT, Σ an n-dimensional manifold with an operator
A ∈ End(Z(Σ) ⊗ Z(Σ)), then taking a closed (n + 1)-dimensional oriented manifold M for
every embedding ι : Σ ↪→ M we can cut along ι(Σ) to get a manifold7 M ′ = M − ι(Σ).
Then Z(M ′) : C → Z(Σ) ⊗ Z(Σ) such that for N = Σ × [0, 1] with the orientation on the
boundary so that Z(N) : Z(Σ)⊗ Z(Σ)→ C then

Z(N) ◦ Z(M ′) = Z(M) . (2.38)

We can then define
〈Aι〉 := Z(M, ι,A) := Z(N) ◦ A ◦ Z(M ′) . (2.39)

This means that we don’t just numbers associated to closed manifolds but numbers associated
to every submanifold together with an operator. This is similar to Witten’s idea of Wilson
loop operators used in [195].

The WRT invariant is already defined from a surgery formula. This allows us to insert
operators in the sum of equation (2.35). We will do this for the TQFT associated to q1/4

with diagonal operators that simply replace

qNj/2 − q−Nj/2
q1/2 − q−1/2

 
qbjNj/2 − q−bjNj/2
q1/2 − q−1/2

(2.40)

in the sum of equation (2.35). Therefore, if we are in the situation of definition 8 then we
define

X(M,L, b; q) =

(
2e(−1/8)(q1/2 − q−1/2)∑4c

k=1 q
k2/4

)`
e
(−3σL

8

)
q

3σL
4

×
c−1∑

N1,··· ,N`=1

J̃N1,··· ,N`(L; q)
∏̀
j=1

qbjNj/2 − q−bjNj/2
q1/2 − q−1/2

.

(2.41)

This definition gives us a list of functions in q, which is q–Weyl finite as stated in the following
corollary.

Corollary 2. Using the fact the coloured Jones polynomial defines a q–holonomic system [77,
Thm. 3], we can deduce that X(M,L, b; q) is q–Weyl finite dimensional with respect to the
operators that multiply by qbi and shift bi 7→ bi + 1.

7To do this requires the tubular neighbourhood theorem.
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Figure 2.12: The local operator associated to a Kirby move with a different framing.

Clearly, this module depends on the presentation of the closed manifolds by a particular
framed link. At the weakest level taking

ΥM = SpanQ(q1/4)

{
X(M,L, b; q) : b ∈ Z`

}
(2.42)

gives a Q(q1/4)–vector space. Notice that denominators of rational functions can lead to the
function not being defined at certain roots of unity. Therefore, we view this module as the
natural subspace of the Q(q1/4)–vector space of functions from almost all roots of unity to C.
Here we have denoted this space without respect to L due to the following theorem. Indeed,
the proof of Theorem 19 given in [112] readily adapts to give the following result and could
have easily been stated there.

Theorem 1. ΥM is a topological invariant ofM , i.e. as a Q(q1/4)–vector space it is invariant
under Kirby moves.

Remark 8. This result fundamentally relies on the fact that we have a family of TQFTs.
For a fixed q this seems to carry almost no information. Indeed it would be either zero or
one dimensional over the associated cyclotomic field.

Proof. We will go through the proof that this is invariant under Kirby moves involving one
strand. This is the base case for an induction argument used in [112], which will also apply
here. Consider, an unknotted component of a link coloured by the 2m + 1 dimensional
representation that has linking number one with one component coloured by the 2n + 1
dimensional representation and zero with all others. This is depicted in Figure 2.12. Then
locally we get an operator also depicted in Figure 2.12. Using Theorem 14, we see that this
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Figure 2.13: Kirby move with one strand.

this local operator is given by multiplication by

2m∑
i=0

(R−1)0,i
i,0(R−1)i,00,iµ

i
i =

2m∑
i=0

qn(i−m)qn(i−m)q(i−m) =
m∑

i=−m

qNi =
qNM/2 − q−NM/2

qN/2 − q−N/2 .

(2.43)
Therefore, using Lemma 2, we see that the Kirby move in Figure 2.13 has local operator
given by multiplication by

q(N2−1)/4+(M2−1)/4 q
NM/2 − q−NM/2

qN/2 − q−N/2 . (2.44)

Therefore, the invariant associated to the framed link of the left of Figure 2.13,

X(L(+), b; q) =

(
2e(−1/8)(q1/2 − q−1/2)∑4c

k=1 q
k2/4

)`+1

e
(−3σL

8

)
q3σL+/4

c−1∑
N1,··· ,N`−1,N,M=1

J̃N1,··· ,N`−1,N,M(L(+); q)
`−1∏
j=1

qbjNj/2 − q−bjNj/2
q1/2 − q−1/2

qb`N/2 − q−b`N/2
q1/2 − q−1/2

qb`+1M/2 − q−b`+1M/2

q1/2 − q−1/2
,

(2.45)
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can be written in terms of L by

X(L(+), b; q)

=

(
2e(−1/8)(q1/2 − q−1/2)∑4c

k=1 q
k2/4

)`
e
(−3σL

8

)
q3σL/4

c−1∑
N1,··· ,N`−1,N=1

J̃N1,··· ,N`−1,N(L; q)

×
`−1∏
j=1

qbjNj/2 − q−bjNj/2
q1/2 − q−1/2

qb`N/2 − q−b`N/2
q1/2 − q−1/2

×
c−1∑
M=1

q(M2−1)/4+(N2−1)/4 q
NM/2 − q−NM/2

qb`N/2 − q−b`N/2
qb`+1M/2 − q−b`+1M/2

q1/2 − q−1/2

−2q3/4(q1/2 − q−1/2)∑4c
k=1 q

k2/4
,

(2.46)
where we note that σL+ = σL + 1. Therefore, to prove invariance under this move we notice
that from a generalisation of [112, Lem. 5.1]

c−1∑
M=1

q(M2−1)/4+(N2−1)/4 q
NM/2 − q−NM/2

qN/2 − q−N/2
qb`+1M/2 − q−b`+1M/2

q1/2 − q−1/2

=
−q−b2`+1/4−1/2

∑4c
k=1 q

k2/4

2(q1/2 − q−1/2)

qb`+1N/2 − q−b`+1N/2

qN/2 − q−N/2 ,

(2.47)

where we use that for any j
4c∑
k=1

qk
2/4 = 2

j+2c−1∑
k=j

qk
2/4 , (2.48)

as q(k+2c)2/4 = qk
2/4+c(k+c) = qk

2/4. Therefore, as

qb`N/2 − q−b`N/2
q1/2 − q−1/2

qb`+1N/2 − q−b`+1N/2

qN/2 − q−N/2 = sign(b`+1)
qb`N/2 − q−b`N/2
q1/2 − q−1/2

|b`+1|−1∑
k=0

q(|b`+1|−1−2k)N/2

= sign(b`+1)

|b`+1|−1∑
k=0

q(b`+|b`+1|−1−2k)N/2 − q−(b`+|b`+1|−1−2k)N/2

q1/2 − q−1/2
,

(2.49)
we have,

X(L(+), b1, . . . , b`+1; q) = sign(b`+1)q−(b2`+1−1)/4

|b`+1|−1∑
k=0

X(L, b1, . . . , b` + |b`+1| − 1− 2k; q) .

(2.50)
Notice that of course for b`+1 = 1 this is simply equality, which proves the invariance of the
WRT invariant and also shows that the vector spaces are equal. Therefore, we see that ΥM
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is invariant under the Kirby move in Figure 2.13. The rest of the proof can then follow along
similar lines to the proof of [112, Lem. 5.6].

For the purpose of this thesis, the existence of such a vector space and the uncanonical
module structures is enough. Indeed, often we will work with different modules, which
should simply have the same span. This theorem does lead to some natural questions.

Question 1. For a given framed link defining M , is this a q–holonomic module?

Question 2. What is dim(ΥM)? Is it related to the Kauffmann bracket Skein module [160,
186]?

Question 3. Is there a version of the AJ conjecture for these modules and how does it
depend on the presentation via a framed link?

2.5 Stationary phase approximations in physics
Consider Witten’s path integral associated to some closed 3–manifoldM and some Lie group
G given previously in equation (2.5) and again here

Z(M ; ~) “ = ”

∫
AM×G/GM×G

exp
(CS(A)

2πi~

)
DA . (2.51)

This should be some kind of exponential integral albeit in an infinite dimensional space.
Therefore, making analogies with finite dimensional integrals we could expect this to have
certain asymptotic properties when ~ ∼ 0. Indeed, applying the method of stationary
phase, discussed in Section 4.1, to such an integral we expect to find asymptotic expansions
determined by the critical points of the functional CS. Given that AM×G is an affine space
these critical points can be calculated using the following

CS(A+ tφ) +O(t2)

=

∫
M

Tr
(
d(A+ tφ) ∧ (A+ tφ) +

2

3
(A+ tφ) ∧ (A+ tφ) ∧ (A+ tφ)

)
+O(t2)

= CS(A) + t

∫
M

Tr
(
dφ ∧ A+ dA ∧ φ+ 2A ∧ A ∧ φ

)
+O(t2)

= CS(A) + t

∫
M

Tr
(
− d(A ∧ φ) + 2dA ∧ φ+ 2A ∧ A ∧ φ

)
+O(t2)

= CS(A) + 2t

∫
M

Tr
(

(dA+ A ∧ A) ∧ φ
)

+O(t2)

(2.52)

where we used Stokes theorem for the last equality. Therefore, for this to vanish for all φ
we see that the curvature FA = dA + A ∧ A must vanish. Therefore, the critical points of
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CS are given by flat connections. The space of flat connection modulo gauge was given by
R(M,G) in equation (1.79). Then using the method of stationary phase we expect8 some
dρ ∈ Q and a(ρ)

k ∈ C such that

Z(M ; ~) ∼
∑

ρ∈R(M,G)

exp
(CS(ρ)

2πi~

)
~dρ(a(ρ)

0 + a
(ρ)
1/2~

1/2 + a
(ρ)
1 ~ + · · · ) , (2.53)

as ~ ∼ 0. There is an important point related to this idea. As we learn very early in our
mathematical careers when dealing with integrals it is natural to view real certain integrals as
a special case of complex integrals. Therefore, critical points can appear outside of our initial
space R(M,G). Indeed, R(M, SU(2)) ⊆ R(M, SL2(C)) and so one may expect these two
theories to be intimately linked. Indeed, Witten [197] proposes that for 1/~ /∈ Z the contour
of integration R(M, SU(2)) must be modified to some other contours in R(M, SL2(C)) to
ensure convergence of the path integral.

For the rest of this section we will consider 1/~ ∈ Z. Witten’s asymptotic expansion conjec-
ture is related to the discussion in [195, Sec. 2]. This discussion was extended on in works
such as [13, 14, 18] where the perturbation theory was described. From the more computa-
tional viewpoint the following conjecture was justified originally by works such as [102, 62].

Conjecture 2 (Witten’s asymptotic expansion conjecture (WAEC)). If M is closed 3–
manifold, then there exists a finite set S of flat connections ρ ∈ R(M, SU(2)), dρ ∈ 1

2
Z and

a
(ρ)
k ∈ C such that for 1/~ ∈ Z and ~→ 0

X(M, exp(2πi~)) ∼
∑
ρ∈S

exp
(CS(ρ)

2πi~

)
~dρ(a(ρ)

0 + a
(ρ)
1/2~

1/2 + a
(ρ)
1 ~1 + · · · ) (2.54)

This conjecture has been extensively studies by Andersen and collaborators [4, 3, 6, 5].
This is proved to leading order for many surgeries on the figure eight knot in [36]. This
paper was the first to show that the WAEC held for a hyperbolic manifold. For some
non-hyperbolic manifolds, this also arises with beautiful connections to partial and mock
θ–functions in [118, 99].

Example 17 (WAEC for 41(−1, 2)). To give a flavour of this conjecture we will use the
explicit example of 41(−1, 2). In Example 16, we saw that the WRT invariant could be
completely computed as

(1− q)X(41(−1, 2); q) =
∞∑
k=0

(−1)kq−k(k+1)/2(qk+1; q)k+1

∑
0≤`≤k

q`(`+1)

(
k

`

)
q

. (2.55)

8Here the form looks as though R(M,G) is discrete however this space has a natural measure and if it is
not discrete it can be interpreted as an integral.
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Figure 2.14: Plots of the WRT invariant of 41(−1, 2) against the first order approximation
in WAEC where 1/~ ∈ Z and e(x) = exp(2πix).

This manifold has four non-trivial SU(2) connections here labelled by ρ1, ρ2, ρ4, ρ5. They have
Chern–Simons values

VC1 = 20.297 · · · , VC2 = −6.7857 · · · , VC4 = 9.2837 · · · , VC5 = 2.1292 · · · ,
(2.56)

which can be computed using the methods of Section 1.15. Let δ be numbers9

δ1 = −11.578 · · · , δ2 = −12.636 · · · , δ4 = −7.0205 · · · , δ5 = −5.3937 · · · .
(2.57)

In Figure 2.14, we plot the values of |X(41(−1, 2); q)| for 1/~ = 1, 2, . . . , 100 against the
expected leading order in WAEC. One can see that to agreement is very good to the naked
eye. However, such graphs can be misleading, albeit fun. Indeed, there is an error of ~1/2

coming from a contribution from the trivial flat connection. A more detailed analysis can be
carried out and with some appropriate coefficients10 aρk and roots of unity µ8

ρ = 1 and taking
~ = 1/1000 we find

|(1− e(~))X(41(−1, 2); e(~))| = 16.099 . . .∣∣∣∣∣∣(1− e(~))X(41(−1, 2); e(~))−
∑

ρ=ρ0,ρ1,ρ2,ρ4,ρ5

µρ~dρ exp

(
VCρ

2πi~

)
a
ρ
0

∣∣∣∣∣∣ = 0.019710 . . .

∣∣∣∣∣∣(1− e(~))X(41(−1, 2); e(~))−
∑

ρ=ρ0,ρ1,ρ2,ρ4,ρ5

µρ~dρ exp

(
VCρ

2πi~

)
(a
ρ
0 + a

ρ
1~)

∣∣∣∣∣∣ = 0.00048434 . . .

∣∣∣∣∣∣(1− e(~))X(41(−1, 2); e(~))−
∑

ρ=ρ0,ρ1,ρ2,ρ4,ρ5

µρ~dρ exp

(
VCρ

2πi~

)
(a
ρ
0 + a

ρ
1~ + a

ρ
2~

2
)

∣∣∣∣∣∣ = 6.5311 · · · × 10
−5

.

(2.58)

This can be continued to many orders and leads to more convincing numerical indicators. In
this example, the theorem to leading order is proved in [36, Thm. 1.1].

9We will come back this this example in more detail in Section 8.3.
10See sections 8.3 and 4.9.
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Given the WRT invariant, numerical computations can be carried out to find the values
VCρ, a

ρ. These methods are discussed in Section 3.2. WAEC is actually much subtler than
some of the conjectures in the following sections. For hyperbolic manifolds, considering
the definition as a sum over a lattice, it would be more natural to see exponential growth.
However, WAEC predicts polynomial growth as ~ ∼ 0. This comes from some kind of
catastrophic cancellation, which seems to happen in general for all three–manifolds.

2.6 Kashaev’s and Chen–Yang’s volumes conjectures

Kashaev [106] introduced certain invariants of links dependingly on N ∈ Z>0 denoted for
a link L by 〈L〉N . He then went on to compute the associated R matrix in [107]. He then
proposed a conjecture for the semi–classical behaviour of his invariant in [108], which relates
the exponential growth to the volume. This appears as the invariant involves the quan-
tum dilogarithm while the volume of a three–manifolds involves the classical dilogarithm.
This conjecture went somewhat unnoticed until work of Murakhami–Murakhami [138], which
showed that Kashaev’s invariant was nothing but the N -th coloured Jones polynomial eval-
uated at the N -th root of unity,

〈L〉N = J̃N,...,N(L; exp(2πi/N)) . (2.59)

Then a slight refinement of Kashaev’s original conjecture, see for Example [139], is given as
follows.

Conjecture 3 (Kashaev’s volume conjecture). Let L by a hyperbolic link (with zero framing).
Then there is some dL ∈ 1

2
Z and a0 ∈ C such that for N ∈ Z and N →∞,

J̃N(L; exp(2πi/N)) ∼ exp
(VC(L)

2πi
N
)
NdL

(
a0 +O(N−1)

)
, (2.60)

where VC(L) is the complexified volume (associated to the geometric connection) calculated
in Section 1.15.

This conjecture has been extensively studied and proved in many cases. A summary of
various cases it has been proved is given in [137, Sec. 3.3]. This remains one of the most
important open problems in quantum topology.

Example 18. Recall from Example 12 and in particular equation (2.23), the coloured Jones
polynomial of the figure eight knot is given by

J̃N(41; q) =
∞∑
k=0

(−1)kq−k(k+1)/2(q1+N ; q)k(q
1−N ; q)k. (2.61)
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1/~

∣∣∣J̃0(41; e(~)) exp
(
− VC(41)

2πi~

)
~3/2

∣∣∣

10 20 30 40 50 60 70 80 90 100

1

Figure 2.15: Plots of the Kashaev invariant of 41 divided by the expected exponential and
polynomial growth from the volume conjecture.

Therefore, the Kashaev invariant for q = exp(2πi/N) is then

J̃0(41; q) = 〈41〉N =
∞∑
k=0

(−1)kq−k(k+1)/2(q; q)2
k. (2.62)

The complexified volume is given by

VC(41) = 2.0299 · · · i . (2.63)

The plot of the ratio J̃0(41; e(~)) exp
(
− VC(41)

2πi~

)
~3/2 is given in Figure 2.15. Here we see it

clearly seems to limit to a constant. (Again one should use more sophisticated methods than
these plots. Consult Section 3.2). This example was first proved by Ekholm. See [140] for
the proof.

Remark 9. This conjecture of course needs the appropriate normalisation of the Jones
polynomial. In the TQFT normalisation the evaluation would simply vanish.

This conjecture has a similar flavour to WAEC however here we just see one dominate term
up to an error, which has exponential term smaller than the volume. More recently, Chen–
Yang [38] introduced a volume conjecture for WRT invariants in contrast to WAEC. Here
the trick is to evaluate at different roots of unity.

Conjecture 4 (Chen–Yang’s Volume conjecture). Let M be a closed hyperbolic 3–manifold.
Then there is some dL ∈ 1

2
Z and a0 ∈ C such that for N ∈ Z and N →∞,

X
(
M ; exp

( 2πi

N + 1/2

))
∼ exp

(VC(M)

2πi

(
N +

1

2

))(
N +

1

2

)3/2(
a0 +O(N−1)

)
. (2.64)
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Figure 2.16: Plots of the ratio of the WRT invariant of 41(−1, 2) and the leading order
expected from the Chen–Yang volume conjecture where 1/~ ∈ Z + 1/2.

Example 19. We will simply continue our example 41(−1, 2), started in Example 17, where
we consider instead of roots of unity exp(2πi~) with 1/~ ∈ Z we have 1/~ ∈ Z + 1/2. Here
the complexified volume is given by

VC7 = 4.8678 · · ·+ 1.3985 · · · i . (2.65)

Then the ratio of the WRT invariant and that expected by the Chen–Yang volume conjecture
is plotted in Figure 2.16. Again this looks like it is approaching some limit as expected. The
conjecture in this example has been proved in [150]. See [199] for a discussion of the progress
more generally.

2.7 Vassilev invariants and the trivial connection

Vassiliev [189] studied the spaces of maps from S1 to S3. This space is stratified. Indeed,
considering the subspace of embeddings is open and the connected components are in bijec-
tion with knots. Vassiliev considers a sequence indexed by Z>0 of subspaces inside the zero
cohomology of these spaces of knots. An element in the k-th group gives a function from the
set of knots called a Vassiliev invariant of degree k. Vassiliev’s invariants can be computed
by reducing diagrams to the unknot but involve invariants of knotted graphs which arise
when a crossing intersects to becomes a four–valent vertex of an embedded graph. These
invariants were further studied by [122, 30, 17, 117, 132].

Importantly, [30] showed the replacing q = e~ in the Jones polynomial of a knot K has
expansion

J2(K; e~) =
∞∑
k=0

ak~k (2.66)
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where ak are Vassiliev invariants of degree k. This was extended in [132] to give the following
theorem.

Theorem A–20. For a knot K the coloured Jones polynomial has expansion

JN(K; e~) =
∞∑
k=0

bk/2c∑
j=0

ak,j(K)N2j~k , (2.67)

where ak,j are Vassiliev invariants of degree k.

This expansion was then conjectured [132, Conj. 2] and quickly proved [171, 170, 172, 19]
to satisfy the following expansion

Theorem A–21. For a knot K there exists Laurent polynomials ak(x) ∈ Q[x±1] such that
a0(x) = 1 and

JN(K; e~) =
∞∑
k=0

ak(exp(N~))

∆K(exp(N~))2k+1
~k , (2.68)

where ∆K(x) is the Alexander polynomial discussed in Section 2.1.

This shows that the coloured Jones polynomial is strictly stronger than the Alexander poly-
nomial. Indeed, we already saw the Jones polynomial distinguished some links and their
mirrors. While Theorem 21 collects diagonal terms in the expansion of Theorem 20 we can
set N = 0 to find a series of Vassiliev invariants, which are intimately related to the Kashaev
invariant given in equation (2.59). To understand how these are related is best understood
through the Habiro ring discussed in Section 5.8.

Example 20. We have the following divergent series associated to the trivial flat connection
on 41 given by

Φ(ρ0)(41; ~) := J0(41; e~) = 1−~2 +
47

12
~4− 12361

360
~6 +

10771487

20160
~8− 23554574521

1814400
~10 + · · · .

(2.69)

This asymptotic series that arise in this way should correspond to a contribution from a
stationary phase approximation around the trivial connection [18, 171, 170]. This can also
be computed for closed manifolds. Here it is more subtle and relies on results such as [136,
148, 96] in the case of integer homology spheres. For more general examples this becomes
more difficult and should be the sl2 LMO invariant [125]. For rational homology spheres
there is a similar extended story to the integer homology spheres [23, 148].
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Example 21. We have the following divergent series associated to the trivial flat connection
on 41(−1, 2) given by

Φ(ρ0)(41(−1, 2);−~) := (1− e~)X(41(−1, 2); e~)

= −~− 25

2
~2 − 1621

6
~3 − 195601

24
~4 − 37907101

120
~5 − 2154244133

144
~6

− 4219228947781

5040
~7 − 2179198982580001

40320
~8 − 1434968055634260781

362880
~9 + · · · .

(2.70)

2.8 Dimofte–Garoufalidis perturbative series

We have already seen through the volume conjectures, discussed in Section 2.6, and Wit-
ten’s asymptotic expansion conjecture, discussed in Section 2.5, that we expect additional
asymptotic series associated to non-trivial connections to arise. These should come from the
stationary phase approximation of the path integral in equation (2.5) around other critical
points. Following Kashaev’s definition of his invariant [106, 107] finite dimensional integrals
were considered in [47, 98, 49], which ultimately led to conjectural computation/definition of
these series in [45, 46] for knots using the Neumann–Zagier matrices in that were discussed
in Section 1.11. These integrals were often lacking a precise contour and this was supplied
and refined in many works of Andersen–Kashaev [8, 7, 9]. We will consider these precise
integrals latter but for now we will apply formal Gaussian integration. We will follow closely
the description given in [45, 46].

Consider some N ×N Neumann–Zagier matrices, defined in Section 1.11,
(
A B

)
i.e. some

half symplectic matrices, ν ∈ ZN , a solution z to the equations

N∏
j=1

z
Ai,j
j (1− z−1

j )Bi,j = (−1)νi (2.71)

and and integral solution11 (f, f ′′) ∈ Z2N to

Af +Bf ′′ = ν . (2.72)

With this data we can define the one–loop invariant, which will be conjecturally related to
the constant term of the asymptotic series arising in the volume conjecture 3. The one–loop
invariant is given by

δA,B,ν,z,f = ± det(A diag(z′′) +B diag(z)−1)zf
′′
z′′−f . (2.73)

11A solution always exists from work of Neumann [144].
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Example 22 (1–loop invariant of 41). Recall that, after Example 6, SnapPy [43] gave
Neumann–Zagier matrices

A =

(
1 1
1 0

)
, B =

(
−1 −1
0 −1

)
, and ν =

(
0
0

)
, (2.74)

which had solutions z1 = z2 = exp(2πi/6) and (f, f ′′) = 0. Therefore,

δ = ± det

(
exp(2πi/6)− exp(−2πi/6) exp(2πi/6)− exp(−2πi/6)

exp(2πi/6) − exp(−2πi/6)

)
= ±

√
−3 . (2.75)

Theorem A–22. [45, Thm. 1.3 and Thm. 1.4] Given A,B, ν, z, f as above then δA,B,ν,z,f
is invariant under all equivalences of Neumann–Zagier data given in Section 1.12.

The higher orders in ~ of the expansion can then conjecturally be computed via Gaussian
integration. Take the series

ψ~(x; z) = exp

( ∑
n,k,n+ k

2
−1>0

~n+ k
2
−1(−x)kBn

n!k!
Li2−n−k(z

−1)

)
, (2.76)

where Bn are the Bernoulli numbers12 with B1 = 1/2. This is related to the quantum
dilogarithm, which will be another function of fundamental importance and discussed in
detail in Section 8.10. Then if det(B) 6= 0 take

H = −B−1A+ diag(z′). (2.77)

If det(H) 6= 0 then taking

gA,B,ν,z,f,~(x; z) = exp

(
− ~1/2

2
xTB−1ν +

~
8
fTB−1Af

) N∏
j=1

ψ~(xi; zi) ∈ Q[[x, ~1/2]] (2.78)

we will apply formal Gaussian integration to the following integrals to define SA,B,ν,f,k(z) so
that

exp

( ∞∑
k=2

SA,B,ν,f,k(z)~k−1

)
=

∫
e−

1
2
xTHxgA,B,ν,z,f,~(x; z)dx∫

e−
1
2
xTHxdx

. (2.79)

We will often drop the A,B, ν, f from the notation when it is not varying. The Sk(z) can
be computed using Wick’s theorem and Feynman diagrams. To compute Sk(z) we consider
all connected graphs G such that for

L(G) := #{1− valent vertices}+ #{2− valent vertices}+ dim(H1(G,Q)) (2.80)
12We will only take B1 = 1/2 in this section.
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Figure 2.17: The Feynman graphs that contribute to the two loop invariant.

we have L(G) ≤ k. Then to each edge associate the propagator,

Π = ~H−1 ∈ Hom((C[[h]]N)⊗2,C[[h]]) , (2.81)

and for each ` > 0 and `–valent vertex associate Γ(`) =
∑N

j=1 Γ
(`)
j ej ⊗ · · · ⊗ ej ∈ (C[[h]]N)⊗`

where

Γ
(`)
j = (−1)`

∞∑
p=δ`,1+δ`,2

Bp

p!
Li2−p−`(z

−1
j )~p−1 − 1

2
(B−1ν)jδ`,1 (2.82)

and as a vacuum contribution i.e. the graph with a single zero valent vertex take

Γ(0) =
N∑
j=1

( ∞∑
p=0

Bp

p!
Li2−p(z

−1
j )~p−1

)
+

~
8
fTB−1Af ∈ C[[h]] . (2.83)

Then we sum over all graphs weighted by the reciprocal of the order of their automorphisms
where we take the various contractions of the propagators and the vertex weights. For
example, if we calculate S2(z) then the graphs that contribute are shown in Figure 2.17.
Therefore, S2(z) is given by

S2(z) = coeff

[
Γ(0) +

N∑
i=1

(1

8
Γ

(4)
i (Πi,i)

2 +
1

2
Γ

(2)
i Πi,i

)
+

N∑
i,j=1

(1

8
Πi,iΓ

(3)
i Πi,jΓ

(3)
j Πj,j +

1

12
Γ

(3)
i Πi,jΓ

(3)
j +

1

2
Γ

(1)
i Πi,jΓ

(3)
j Πj,j +

1

2
Γ

(1)
i Πi,jΓ

(1)
j

)
, ~
]
.

(2.84)

Example 23 (2–loop invariant of 41). Plugging in the various formulae we find that

S2(exp(2πi/6), exp(2πi/6)) =
11

108
exp(2πi/6)− 5

54
∈ 11

24
√
−3

3 +
1

24
Z . (2.85)

This is computed in Code 9.



2.8. DIMOFTE–GAROUFALIDIS PERTURBATIVE SERIES 133

Taking the associated elements of the extended Bloch group [z] corresponding to A,B, ν, f
we define using (1.115)

SA,B,ν,f,0(z) = VC([z]) = R([z]) , (2.86)
and then define

SA,B,ν,f,1(z) = − log(δA,B,ν,z,f )/2 . (2.87)
With these definitions we can take

ΦA,B,ν,z,f (~) = exp

( ∞∑
k=0

SA,B,ν,f,k(z)~k−1

)
. (2.88)

Notice that there is ambiguity for the first 3 coefficients with these constructions so that

SA,B,ν,f,0(z) ∈ C/(π2Z) , SA,B,ν,f,1(z) ∈ C/
(πi

2
Z
)
, and SA,B,ν,f,1(z) ∈ C/

( 1

24
Z
)
.

(2.89)
The first arises due to the ambiguity in the Chern–Simons invariant and should be able to be
lifted to 4π2 ambiguity. Then the other two come from the ability to multiple by η-functions
which introduce eighth roots of unity and exponential series with exp(~/24). See Section 7.2.

Conjecture 5. [45] If K is a knot with Neumann–Zagier data A,B, ν, z, f , then the series
in ~ defined in equation (2.88) should have

J̃N(K; exp(2πi/N)) ∼ ΦA,B,ν,z,f (2πi/N) . (2.90)

Remark 10. Although this conjecture would prove invariance at the time of writing invari-
ance is only known for S0 and S1.

A proposal for a version of this calculation in the case of closed manifolds was given by
Gang–Romo–Yamazaki13 [64]. Here it relies on a surgery kernel which came from work
in [15]. While from the mathematical perspective the conjecture is more unjustified than
the previous, as it relies on a conjectural surgery formula, it does seem to agree in simple
examples. The construction is completely analogous to the that in the previous section.
To perform p/q–surgery on a knotK, take some extended N×N Neumann–Zagier matrices14

for the knot K, defined in Section 1.11,
(
A B

)
and

(
C D

)
i.e. a 2N × 2N symplectic

matrix, ν, µ ∈ ZN where for a knot µ = (µ1, 0, . . . , 0), a solution z to the equations
N∏
j=1

z
Ai,j
j (1− z−1

j )Bi,j = (−1)νim2δj,N ,
N∏
j=1

z
2C1,j

j (1− z−1
j )2D1,j = (−1)µ1`2 ,

and m2p`2q = 1 .

(2.91)

13I’m extremely grateful to the authors for the very generous sharing of their code with me. This allowed
me to verify their computations matched my own very early on in my work on this subject.

14Note that in [64] they use a different convention to [45] and this thesis as to which row of the Neumann–
Zagier matrices corresponds to the meridian. In particular, they put the equation for the boundary curve in
the first row and we put it in the last row.
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an integral solution (f, f ′′) ∈ Z2N to

Af +Bf ′′ = ν , and Cf +Df ′′ = µ , (2.92)

and finally r, s ∈ Z such that rq − ps = 1. With this data we define one–loop invariant
with the auxiliary matrix

Ri,j =
2qδi,N(B−1)j,N

(p+ 2q(DB−1)1,N)
(2.93)

by

δA,B,C,D,ν,µ,z,f =
± det((A−R) diag(z′′) +B diag(z)−1)zf

′′
z′′−f (p+ 2q(DB−1)1,N)

(m1/q exp(∓πis/q)−m−1/q exp(±πis/q))2
.

(2.94)
Similarly to the case of knots, we then take the symetric (N + 1)× (N + 1)–matrix H such
that for i, j < N + 1

Hi,j = (−B−1A+ diag(z′))i,j , (2.95)

for i = N + 1 with j 6= N + 1
Hi,j = 2(B−1)j,N , (2.96)

and
HN+1,N+1 = −2

p

q
− 4(DB−1)1,N . (2.97)

If det(H) 6= 0 then for

Γ
(`)
N+1 = ((fTB−1)N + q−1)δ`,1 −

(
− 2

q

)`
Li1−`(exp(∓2πis/q)m−2/q) (2.98)

taking

gA,B,C,D,ν,µ,f,~(x; z) = gA,B,ν,z,f,~(x; z) exp

(
− s~

2q
+
∞∑
`=1

Γ
(`)
N+1

x`N+1

`!

)
(2.99)

to get the higher loops we apply formal Gaussian integration

exp

( ∞∑
k=2

SA,B,C,D,ν,µ,f,k(z)~k−1

)
=

∫
e−

1
2
xTHxgA,B,C,D,ν,µ,f,~(x; z)dx∫

e−
1
2
xTHxdx

. (2.100)

Then, taking
Π = ~H−1 ∈ Hom((C[[h]]N+1)⊗2,C[[h]]) , (2.101)

and for each ` > 0 and `–valent vertex associate Γ(`) =
∑N+1

j=1 Γ
(`)
j ej⊗· · ·⊗ej ∈ (C[[h]]N+1)⊗`

where for j < N + 1 we have Γ
(`)
j as given in equation (2.82) and for j = N + 1 as in

equation (2.98) and as a vacuum contribution i.e. the graph with a single zero valent vertex
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take Γ(0) as in (2.83) with an additional term −s~/4q. With these definitions we can now
define Sk(z) in exactly the same way as we did in the case of knots. For example,

S2(z) = coeff

[
Γ(0) +

N+1∑
i=1

(1

8
Γ

(4)
i (Πi,i)

2 +
1

2
Γ

(2)
i Πi,i

)
+

N+1∑
i,j=1

(1

8
Πi,iΓ

(3)
i Πi,jΓ

(3)
j Πj,j +

1

12
Γ

(3)
i Πi,jΓ

(3)
j +

1

2
Γ

(1)
i Πi,jΓ

(3)
j Πj,j +

1

2
Γ

(1)
i Πi,jΓ

(1)
j

)
, ~
]
.

(2.102)

Example 24 (1–loop and 2–loop for 41(1, 2)). The gluing equations after surgery are given
by

z2z′w2w′ = 1 and zw4(1− w−1)−5 = 1 , (2.103)

which has solutions

w14 + w13 − w11 − 2w10 + 4w9 − 4w8

+ 3w7 − 7w6 + 27w5 − 50w4 + 49w3 − 27w2 + 8w − 1 = 0 ,

− 136w13 − 229w12 − 156w11 + 32w10 + 299w9 − 334w8 + 318w7

− 191w6 + 821w5 − 3112w4 + 4668w3 − 3468w2 + 1309w − 204 = z ,

− 154 + 896w − 2142w2 + 2595w3 − 1561w4 + 395w5 − 123w6 + 177w7

− 202w8 + 147w9 + 56w10 − 28w11 − 85w12 − 63w13 = m.

(2.104)

Then we find that

δ = 3711w13 + 5779w12 + 3238w11 − 1863w10 − 8408w9 + 10189w8 − 9190w7

+ 6030w6 − 22641w5 + 87584w4 − 136845w3 + 105904w2 − 41514w + 6703
(2.105)

and

S2(z, w) = −103985214498148

52058057626129
w13 − 184056457134922

52058057626129
w12 − 542317054615207

208232230504516
w11

+
59505081205693

208232230504516
w10 +

712734937701865

156174172878387
w9 − 893320433832741

208232230504516
w8

+
2799985419301201

624696691513548
w7 − 1552744881772601

624696691513548
w6 +

617002533395308

52058057626129
w5

− 6997401920285924

156174172878387
w4 +

40417653146722771

624696691513548
w3 − 9551945238699689

208232230504516
w2

+
2570480289595373

156174172878387
w − 1027130175419887

416464461009032
(2.106)
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Now letting

ξ = 119− 770w + 2004w2 − 2599w3 + 1647w4 − 420w5 + 116w6 − 171w7

+ 192w8 − 167w9 − 49w10 + 50w11 + 104w12 + 69w13 ,
(2.107)

which satisfies
ξ7 − ξ6 − 2ξ5 + 6ξ4 − 11ξ3 + 6ξ2 + 3ξ − 1 = 0 , (2.108)

we can see that

δ = 74 + 66ξ − 133ξ2 + 74ξ3 − 31ξ4 − 15ξ5 + 12ξ6 . (2.109)

Then S2 can be shown to be in

1497746 + 1345119ξ − 3675733ξ2 + 2082815ξ3 − 839488ξ4 − 283405ξ5 + 383432ξ6

24δ3
+

1

24
Z .

(2.110)
This is all computed in the Code 10.

In [64], they then make the analogue to conjecture 5 in relation to the Chen–Yang volume
conjecture 4. We will see later in sections 8.3 and 4.9 that this seems to hold for the previous
example. While these methods provide conjectures for the first few coefficients, computing
even ten coefficients with Feynman diagrams is computationally extremely costly when we
have even just two tetrahedra. To explore the asymptotic behaviour of quantum invariants
it then becomes of interest as to whether one can compute at least one hundred terms in
these asymptotic expansions. To do this we can take a numerical approach and then explore
the behaviour experimentally. This numerical analysis and associated techniques to make
sense of these asymptotic series will be the content of the next part.
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Chapter 3

From functions to approximations and
back again

Asymptotic series describe the limiting behaviour of a function or sequence. In ideal cases,
one finds an infinite Taylor series that converges in some neighbourhood of the limiting
point. More generally, one finds an infinite Taylor series that has zero radius of convergence.
These series with zero radius of convergence can provide good approximations to a function of
interest with some theoretical bound on the error. Firstly, I will describe the basic definitions
of asymptotic equivalence. Then I will describe various numerical methods to compute
asymptotic series. These extrapolation methods were taught to me by Don Zagier. His
method is a variation on a method discovered by Richardson, which will be described first.
I will then describe an array of variations. Finally, I will introduce a new variation of the
method that I found, which deals with oscillatory sequences. Most of the following initial
sections are also discussed in [203]. Next we consider a natural occurrence of divergent
series coming from differential equations. Then we turn to the subject of making sense of
the value of a divergent series at a finite point. This is done at first through the method
of optimal truncation, which is also smoothed. Then we consider the more general study
of approximating functions with rational functions, i.e. Padé approximation. Finally, we
discuss Borel resummation. Combining Padé approximation with the Borel transform and
Laplace integral will be a fundamental numerical method of giving a finite value to a divergent
series. The key point, which is currently in most cases conjectural, is that the Borel transform
of series we are interested in has endless analytic continuation.

3.1 Asymptotic series
Asymptotic series are a certain manifestation of smoothness. Roughly a function has an
asymptotic series around a point if it has an infinite Taylor series, which may have zero radius
of convergence. Asymptotic series appear in nature as, for example, solutions to differential
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equations, sending q → 1 in a q–series, and from generating series related to graphs. To make
precise our description of asymptotic series, we will give some basic definitions of asymptotic
equivalence. The idea of asymptotic equivalence of sequences is that, up to multiplication
by some number, the behaviour of two sequences at infinity is the same to leading order.
See [151] for some more details.

Definition 9 (∼, o, and O). [151] If xn, yn ∈ C× are sequences, then

xn ∼ yn if lim
n→0

xn
yn

= 1 ,

xn = O(yn) if
∣∣∣xn
yn

∣∣∣ is bounded for n > N for some N ∈ Z ,

xn = o(yn) if lim
n→∞

xn
yn

= 0 .

(3.1)

Often we will be interested in sequences such that for some C, c, Ak ∈ C and for all K ∈ Z
we have

xn = Cnnc
( K∑

k=0

Akn
−k +O(n−K−1)

)
(3.2)

In this case, we say xn has asymptotic expansion [151, Ch. 1, Sec. 7.1] given by1

xn ∼ Cnnc(A0 + A1n
−1 + · · · ) . (3.3)

Example 25. A famous example of an asymptotic expansion is given by Stirling’s approxi-
mation

n! ∼ nn−
1
2 exp(−n)

√
2π
(

1 +
1

12n
+

1

288n2
+ · · ·

)
. (3.4)

We will use this example to test our numerical methods.

Although it is essentially covered in the previous definitions, we can extend the previous
notation to include the situation when we have multiple exponential terms. If we take
xn, C, c,D, d, Ak, Bk ∈ C and |C| = |D|, then

xn ∼ Cnnc(A0 + A1n
−1 + · · · ) +Dnnd(B0 +B1n

−1 + · · · )

if for all K ∈ Z>0 lim
n→∞

(
xn − Cnnc

K∑
k=0

Akn
−k −Dnnd

K∑
k=0

Bkn
−k
)
nK = 0 .

(3.5)

This definition can be extended to any number of terms not just two.

We can treat the symbols o and O algebraically as described in the following proposition.
1Notice the double use of ∼ as noted in [151, Ch. 1, Sec. 7.1].
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Proposition 1. Suppose that wn, xn, yn, zn ∈ C× are sequences, then

• if xn = O(yn) and zn = O(yn) then xn + zn = O(yn),

• if xn = O(yn) and zn = O(wn) then xnzn = O(ynwn),

and the same with O replaced by o. Finally,

• if xn = o(yn) then xn = O(yn).

3.2 Richardson’s and Zagier’s extrapolation methods
Consider a sequence of numbers {xn} such that

xn ∼ A0 + A1n
−1 + A2n

−2 + · · · . (3.6)

We want to answer the basic question: given xn numerically for some set of n how can one
determine the Ai numerically?

Richardson’s basic idea is is to write out the asymptotics as a linear system and only partially
solve this linear system. The size of the linear system is then related to the order of the error
to which we can compute the coefficients Aj. Richardson, then has an inductive method
that can be used to solve this linear system from smaller ones. Zagier rediscovered this
approach from a slightly different point of view. His approach is closer to the second method
of Richardson. He takes combinations of the values of the sequence to decrease the order of
subleading terms. Then as the leading term will be much larger than the subleading, one
can use the value of the new sequence as a good approximation of the limit. We will give his
description discussed in [90, 203]. Then we will explain the equivalence with Richardson’s
method. Zagier’s observation is that if xn satisfies equation (3.6), then

nkxn ∼ A0n
k + A1n

k−1 + · · ·+ Ak + Ak+1n
−1 + · · · . (3.7)

Therefore, taking the k-th difference of this sequence will give a sequence asymptotic to

k!A0 + (−1)kk!Ak+1n
−k−1 + · · · . (3.8)

Definition 10. Let ∆{xn} = {xn+1 − xn} and n{xn} = {nxn}. Then define the function
extrapk, mapping sequences to sequences, such that

extrapk{xn} =
1

k!
∆knk{xn} . (3.9)

The first point is that for k ≥ ` > 0 we have extrapk{n−`} = {0}, while for ` > k we have
extrapk{n−`} = O(n−`). Therefore, we immediately have the proposition.
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Proposition 2. If {xn} is a sequence such that xn ∼
∑∞

j=0Ajn
−j, then

extrapk{xn} = A0 +O(n−k−1) . (3.10)

We can explore the error in more detail. Firstly, the action of extrapk on monomials is given
by

extrapkn
−` =

1

k!

k∑
j=0

(−1)j
(
k

j

)
(n+ k − j)k−`

=
1

k!

k∑
j=0

∞∑
p=0

(−1)j
(
k

j

)(
k − `
p

)
nk−`−p(k − j)p

=
∞∑
p=0

(
k − `
p

)
nk−`−p

1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)p

=
∞∑
p=0

(
k − `
p

)
S(p, k)nk−`−p

(3.11)

where S(p, k) are the Stirling numbers of the second kind. Notice that for k ≥ ` > 0 and all
p, or ` > k > 0 and p > k we have (

k − `
p

)
S(p, k) = 0 . (3.12)

Therefore,

extrapk

∞∑
`=0

n−`A` = A0 +
∞∑

`=k+1

∞∑
p=k

(
k − `
p

)
S(p, k)A`n

k−`−p

= A0 + n−k
∞∑
`=0

∞∑
p=0

(−`− 1

p+ k

)
S(p+ k, k)A`+k+1n

−`−p−1

= A0 + n−k−1

∞∑
r=0

n−r
r∑
p=0

(−1)p+k
(
r + k

p+ k

)
S(p+ k, k)Ar−p+k+1

(3.13)

If |A`| is increasing then∣∣∣∣ r∑
p=0

(−1)p+k
(
r + k

p+ k

)
S(p+ k, k)Ar−p+k+1

∣∣∣∣ ≤ S(r + k + 1, k + 1)|Ar+k+1|

≤ 1

2

(
r + k + 1

k + 1

)
(k + 1)r|Ar+k+1| ≤ 2r+k(k + 1)r|Ar+k+1| .

(3.14)
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Therefore, if |A`| is increasing then∣∣∣extrapk

∞∑
`=0

n−`A`

∣∣∣ ≤ A0 + n−k−1

∞∑
r=0

2r+k(k + 1)r|Ar|n−r . (3.15)

Example 26. To illustrate the method consider

xn = n!n
1
2
−n exp(n) , (3.16)

which has asymptotic series deducible from equation (3.4). Using extrapk we can compute
approximations of

√
2π. We have

extrap1(x)100 = 2.506606727 · · · , extrap1(x)100 −
√

2π = −2.154718332 · · · × 10−5 ,

extrap2(x)100 = 2.506628488 · · · , extrap2(x)100 −
√

2π = 2.129785028 · · · × 10−7 ,

extrap3(x)100 = 2.506628273 · · · , extrap3(x)100 −
√

2π = −2.015005875 · · · × 10−9 .
(3.17)

This method can be used in a variety of contexts. Firstly, notice that for xn as in equa-
tion (3.6) we can find all Aj by inductively finding Ai for i < j and then constructing the
sequence

njxn −
j−1∑
i=0

Ain
j−i ∼ Aj + Aj+1n

−1 + · · · , (3.18)

and taking extrapk of this sequence. Then we can consider more general sequences. For
example, suppose that

xn ∼ nc(A0 + A1n
−1 + · · · ) . (3.19)

Then
xn+1

xn
∼ 1 + cn−1 + · · · . (3.20)

Therefore, we can again use extrapk to compute c then dividing by nc we are back to the
previous case. More generally we could have

xn ∼ (n!)γCnnc(A0 + A1n
−1 + · · · ) , (3.21)

and then if we take quotients
xn+1

xn
∼ nγC(1 + · · · ) , (3.22)

which again reduces to the previous cases. These variants are discussed in [90, 203]. There
is also a version discussed in [203] for |Ci| = |Cj| and

xn ∼
K∑
i=1

Cn
i n

ci
(
A

(i)
0 + · · ·

)
, (3.23)
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if we know Ci and ci. We take

extrapkC
−n
K n−cK−1xn , (3.24)

which up to cK − k this reduces the number of terms to K − 1 which can then continue
by induction to get back to the previous case. This example in conveniently computed by
considering ( K∏

j=1

Cn
j n

cjextrapkC
−n
j n−cj

)
{xn} . (3.25)

along with ( K∏
j=1

Cn
j n

cjextrapkC
−n
j n−cj

)
{Cn

i n
ci} (3.26)

Therefore,( K∏
j=1

Cn
j n

cjextrapkC
−n
j n−cj

)
{xn} =

K∑
i=1

A
(i)
0

( K∏
j=1

Cn
j n

cjextrapkC
−n
j n−cj

)
{Cn

i n
ci+O(n−k−1)}

(3.27)
Therefore, taking K values of n we can form a matrix and solve for A(i)

0 up to O(n−k−1)
corrections. This matrix approach in fact works in much more general cases.
All these extrapolation methods fit into a general method called the E-algorithm. This is
discussed, for example, in [152]. To describe this method suppose that

xn − A0 − A1g1(n)− · · · − Akgk(n) = O(f(n)) , (3.28)

where Aj are unknowns. Then consider the matrix equation
1 g1(n) · · · gk(n)
1 g1(n+ 1) · · · gk(n+ 1)
...

... · · · ...
1 g1(n+ k) · · · gk(n+ k)



A0

A1
...
Ak

 =


xn +O(f(n))

xn+1 +O(f(n+ 1))
...

xn+k +O(f(n+ k))

 . (3.29)

Therefore,

A0 =

det


xn +O(f(n)) xn+1 +O(f(n+ 1)) · · · xn+k +O(f(n+ k))

g1(n) g1(n+ 1) · · · g1(n+ k)
...

... · · · ...
gk(n) gk(n+ 1) · · · gk(n+ k)



det


1 1 · · · 1

g1(n) g1(n+ 1) · · · g1(n+ k)
...

... · · · ...
gk(n) gk(n+ 1) · · · gk(n+ k)


(3.30)
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This method relates to the original method using extrapk by letting gj(n) = n−j and f(n) =
n−k−1. This is illustrated in the following proposition.

Proposition 3. Let {xn} be a sequence. Then

extrapk{xn} =det


xn xn+1 · · · xn+k

n−1 (n+ 1)−1 · · · (n+ k)−1

...
... · · · ...

n−k (n+ 1)−k · · · (n+ k)−k

 det


1 1 · · · 1
n−1 (n+ 1)−1 · · · (n+ k)−1

...
... · · · ...

n−k (n+ 1)−k · · · (n+ k)−k


−1 .

(3.31)

Proof. Notice that extrapk{xn} is given by

extrapk{xn} =
{ k∑
m=0

(−1)k+m 1

m!(k −m)!
(n+m)kxn+m

}
. (3.32)

Then notice that from the Vandermonde determinant

det


1 1 · · · 1
n−1 (n+ 1)−1 · · · (n+ k)−1

...
... · · · ...

n−k (n+ 1)−k · · · (n+ k)−k

 =
∏

0≤i<j≤k

i− j
(n+ j)(n+ i)

=
k∏
j=0

(−1)j
j!

(n+ j)k

(3.33)
while

det

n
−1 (n+ 1)−1 · · · (n+m− 1)−1 (n+m+ 1)−1 · · · (n+ k)−1

...
... · · · ...

... · · · ...
n−k (n+ 1)−k · · · (n+m− 1)−k (n+m+ 1)−k · · · (n+ k)−k


=

∏
0≤i≤k
i 6=m

1

(n+ i)

∏
0≤i<j≤k
i,j 6=m

i− j
(n+ j)(n+ i)

=
∏

0≤i≤k
i 6=m

1

(n+ i)k

∏
0≤i<j≤k
i,j 6=m

(i− j) .
(3.34)

Then notice that the quotient of equation (3.34) by equation (3.33) is given by

(n+m)k
∏

0≤i<m

1

(i−m)

∏
m<j≤k

1

(m− j) = (−1)k(n+m)k
1

m!(k −m)!
. (3.35)

Therefore, the quotient of determinants in equation (3.31) is equal to equation (3.32) by
expanding the first determinant in minors along the first row.
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This method can be used to find asymptotics of more general forms. For example, take

xn ∼
K∑
i=1

(n!)γiCn
i n

ci

∞∑
j=0

A
(i)
j n

−j . (3.36)

Then one can take gi,j(n) = (n!)γiCn
i n

ci−j for i = 1, . . . , K and j = 0, . . . , k. The using this
method one can find solutions for A(i)

j . One issue with all of these methods is that one needs
knowledge of γi, Ci, ci.

Remark 11. When applying these numerical methods we use some finite set of values of n
to evaluate our sequence xn. Adding exponentially smaller terms will give rise to the same
asymptotic series, however at a finite value of n, these exponentially small terms may in
fact dominate if they are multiplied by some large pre–factor. This means that depending
on the example the error of the method for some finite n is hard to quantify without further
assumptions. For example, the sequence xn = 1 + 21000−n ∼ 1 + O(2−n) will look O(2−n)
numerically until n is around 1000.

3.3 A method for competing exponentials

The basic variants to extrapolation methods transform the sequence in a way which alters
the asymptotics into a form that one of the previous variants can deal with. Any combination
of the terms of the sequence can be used to create a new series, linear or non-linear. Don
Zagier posed the question of how one could numerically determine Ci, ci in equation (3.23)
without their prior knowledge.

The following transformations give a possible answer. These transformations give the ability
to change exponential growth of coefficients. This approach has many free parameters but
we will give a specific version that can of course be adjusted to ones needs. The basic trick
is to use the binomial theorem to change the exponential growth.

Proposition 4. If xn is a sequence such that for some, Ci, A
(i)
0 , ci ∈ C where |Ci| = |Cj| for

all i, j, we have

xn ∼
K∑
i=1

Cn
i n

ci
(
A

(i)
0 + · · ·

)
, (3.37)

then, if for z ∈ C we have |Ci + z| > |Cj + z| for j 6= i,

n∑
m=0

(
n

m

)
xn+mz

n−m ∼
(

1 +
Ci

Ci + z

)ci
nciCn

i (Ci + z)n
(
A

(i)
0 + · · ·

)
. (3.38)
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Proof. Using Proposition 1 we have

n∑
m=0

(
n

m

)
xn+mz

n−m ∼
K∑
i=1

n∑
m=0

(
n

m

)
Cn+m
i zn−m(n+m)ci

(
A

(i)
0 + · · ·

)
=

K∑
i=1

Cn
i n

ci
(
A

(i)
0 + · · ·

) n∑
m=0

(
n

m

)(
1 +

m

n

)ci
Cm
i z

n−m

=
K∑
i=1

(
1 +

Ci
Ci + z

)ci
nciCn

i (Ci + z)n
(
A

(i)
0 + · · ·

)
,

(3.39)

The last equality follows from the identity

n∑
m=0

(
n

m

)(
1 +

m

n

)d
Cm = (C + 1)n

(
1 +

C

C + 1

)d
(1 + · · · ) . (3.40)

To prove this, we shift and expand using the generalised binomial theorem in a region where
it converges absolutely and uniformly in n as follows:

n∑
m=0

(
n

m

)(
1 +

m

n

)d
Cm =

n∑
m=0

(
n

m

)
3d

2d

(
1− 1

3
+

2

3

m

n

)d
Cm

=
3d

2d

∞∑
r=0

(
d

r

) n∑
m=0

(
n

m

)(
− 1

3
+

2

3

m

n

)r
Cm

=
3d

2d

∞∑
r,s=0

(
d

r

)(
r

s

)(
− 1

3

)r−s n∑
m=0

(
n

m

)(2

3

m

n

)s
Cm .

(3.41)

Now we can express the sum over m in terms of derivatives in C. Then expressing (C∂C)s

in terms of Cs∂sC using Stirlings numbers of the second kind S(s, k) we find that

n∑
m=0

(
n

m

)(
1 +

m

n

)d
Cm =

3d

2d

∞∑
r,s=0

(
d

r

)(
r

s

)(
− 1

3

)r−s(2

3

C

n

∂

∂C

)s
(C + 1)n

=
3d

2d

∞∑
r,s=0

(
d

r

)(
r

s

)
1

ns

(
− 1

3

)r−s2s

3s

s∑
k=0

S(s, k)Ck ∂k

∂Ck
(C + 1)n

=
3d

2d

∞∑
r,s=0

(
d

r

)(
r

s

)
1

ns

(
− 1

3

)r−s2s

3s

s∑
k=0

S(s, k)(n)kC
k(C + 1)n−k .

(3.42)

This gives the full expansion in n−1 and to finish the proof we notice that the n0 coefficients
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are given by

n∑
m=0

(
n

m

)(
1 +

m

n

)d
Cm =

3d

2d

∞∑
r,s=0

(
d

r

)(
r

s

)(
− 1

3

)r−s2s

3s
Cs(C + 1)n−s(1 + · · · )

= (C + 1)n
3d

2d

∞∑
r=0

(
d

r

)(
− 1

3
+

2

3

C

C + 1

)r
(1 + · · · )

= (C + 1)n
(

1 +
C

C + 1

)d
(1 + · · · ) .

(3.43)

Therefore, by varying z, so that for some z = zi we have |Ci + zi| > |Cj + zi| for j 6= i, we
can find Ci and ci by applying the original extrapolation method to the new sequence and
solving the quadratic equation. To see that varying z will find all the exponential terms,
notice that if arg(zi) = arg(Ci) then |Ci+zi| > |Cj+zi| for j 6= i as can be seen in Figure 3.1.
Although the quadratic equation has two solutions for Ci if we slightly vary zi we can look
for the solution which remains constant. One important note that is illustrated by Figure 3.1
and Remark 11 is that, if Ci has a similar argument to another Cj then the numerical error
will be much higher using the extrapolation methods. For example, in Figure 3.1, C3 would
be harder to compute than C4 in practice.

The Airy function is given by

Ai(x) =
1

π

∫ ∞
0

cos
(t3

3
+ xt

)
dt . (3.44)

We can explore the asymptotics of this function as x→ −∞. To do this take the sequence

xn = Ai(−n2/3). (3.45)

where we find for example

x100 = −0.26073 · · · , x101 = −0.21962 · · · , x102 = −0.084741 · · · . (3.46)

Then applying the previous methods we find nonsense. For example, applying the previous
code gives the following outputs.

1 xx=vector (250,n,airy(-n^(2/3))[1]);
2 asymp(xx ,100 ,10)
3 /* = [2.0666 E16 , -1055.8, -9.1801 E492] */
4 asymp(xx ,100 ,11)
5 /* = [ -7.3328 E17 , -1169.1, 3.5239 E565] */
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C1

C2C3

C4

C1 + z3

C2 + z3

C3 + z3

C4 + z3

C1 + z4

C2 + z4
C3 + z4

C4 + z4

Figure 3.1: Oscillatory method’s affect on exponential terms sending Ci to Ci + z.
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Therefore, we must use the oscillatory method to probe this sequence. Testing various
outcomes of the new method with z = e(k/10) for k = 1, · · · , 10 we find the following table
of outputs of potential values of C(`)

i where ` = 1, 2 indexes the two solutions to the quadratic
equations giving Ci. Here, to find the various limits I’ve used extrap5.

k C
(1)
i C

(2)
i

0 1.3264 · · · × 105 −1.3264 · · · × 105

1 0.90125 · · ·+ 0.63470 · · · i −1.710 · · · 3− 1.2225 · · · i
2 0.78589 · · ·+ 0.61837 · · · i −1.094 · · · 9− 1.5694 · · · i
3 0.78589 · · ·+ 0.61837 · · · i −0.4768 · · · 7− 1.5694 · · · i
4 0.78589 · · ·+ 0.61837 · · · i 0.023130− 1.2062 · · · i
5 0.50000 · · ·+ 2.5912 · · · i× 104 0.50000 · · · − 2.5912 · · · i× 104

6 0.78589 · · · − 0.61837 · · · i 0.023130 · · ·+ 1.2062 · · · i
7 0.78589 · · · − 0.61837 · · · i −0.47687 · · ·+ 1.5694 · · · i
8 0.78589 · · · − 0.61837 · · · i −1.0949 · · ·+ 1.5694 · · · i
9 0.90125 · · · − 0.63470 · · · i −1.7103 · · ·+ 1.2225 · · · i

We see that at k = 0, 1, 5, 9 we seem to get unstable answers, which leads us to suspect
nonsense. This can be verified with more detailed checks. Then applying the method at
z = e(3/10) we find a contribution from a series of the form

(0.78589 · · ·+ 0.61837 · · · i)nn−0.16667(0.19947 · · · − 0.19947 · · · i+ · · · ) (3.47)

while at z = e(7/10) we find a contribution from a series of the form

(0.78589 · · · − 0.61837 · · · i)nn−0.16667(0.19947 · · ·+ 0.19947 · · · i+ · · · ) . (3.48)

With some experimentation one can recognise these numbers explicitly to the find the fol-
lowing guess for the leading order asymptotics

xn =
exp

(
2i
3
n− πi

4

)
2
√
πn

1
6

(1+· · · )+
exp

(
− 2i

3
n+ πi

4

)
2
√
πn

1
6

(1+· · · ) =
cos
(

2
3
n− π

4

)
√
πn

1
6

(1+· · · ) . (3.49)

This of course agrees with the known asymptotics of the Airy function. Then, subtracting
off the leading order and applying the method again we find a guess for the next coefficients
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given by

xn ∼
exp

(
2i
3
n− πi

4

)
2
√
πn

1
6

(
1− 5i

48n
+ · · ·

)
+

exp
(
− 2i

3
n+ πi

4

)
2
√
πn

1
6

(
1 +

5i

48n
+ · · ·

)
=

cos
(

2
3
n− π

4

)
√
πn

1
6

(1 + · · · ) +
sin
(

2
3
n− π

4

)
√
πn

7
6

( 5

48
+ · · ·

)
.

(3.50)

These computations can be implemented in the following PARI/GP Code 15. For a more
interesting application of the method see Example 44.

3.4 Linear differential equations
Homogeneous linear differential equations can be described as modules of a certain non-
commutative algebras. For example, consider the algebra generated by x,Dx such that

[Dx, x] = x. (3.51)

This algebra acts on smooth functions in a single variable x and on formal power series in x
via

(Dxf)(x) = x
∂f

∂x
(x), Dx

∑
k

akx
k =

∑
k

kakx
k,

(xf)(x) = xf(x), x
∑
k

akx
k =

∑
k

ak−1x
k.

(3.52)

The product rule shows that this action is well defined as

[Dx, x]f(x) = x
∂xf

∂x
(x)− x2∂f

∂x
(x) = xf(x). (3.53)

For a given problem we are interested in certain modules. These will be generated by
functions or power series satisfying equations of the form

N∑
i=0

αi(x)Di
xf = 0,

∑
k

N∑
i=0

Mi∑
j=0

αij(k − j)iak−jxk = 0, (3.54)

for some αi(x) =
∑Mi

j=0 αijx
j. This can naturally be extended to many variables.

Example 27 (Exponential and exponential integral). Consider functions exp in a single
variable such that

(Dx − x) exp = 0, kak − ak−1 = 0. (3.55)
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These generate a module of this non-commutative algebra. This of course has a standard
generator

exp(x) =
∞∑
k=0

xk

k!
. (3.56)

We can consider in-homogeneous solutions and their homogenised versions

(Dx − x)f = 1, kbk − bk−1 = δk,

(D2
x − xDx − x)f = 0, k2ak − kak−1 = 0.

(3.57)

This also has a standard solution

f(x) = Ei(x) exp(x) = exp(x)

∫ ∞
x

exp(−t)t−1dt. (3.58)

From integration by parts, see for Example [141, Sec. 1.1], one can find the asymptotic
expansion as x→∞

f(x) ∼
−1∑
−∞

bkx
k =

∞∑
k=0

(−1)k
k!

xk+1
. (3.59)

Notice that these bk satisfy the same recursion for ak except the recursion does not hold
when k = 0 (or we could take bk = ∞ for k ≥ 0). We will see that these sequences can in
fact be related via the Frobenius deformation. Moreover, we will see in Section 3.7 that this
asymptotic series can be used to construct the solution Ei(x) exp(x).

Example 28 (Apéry numbers). Consider functions in a single variable f(x) such that(
D3
x − x (2Dx + 1)

(
17D2

x + 17Dx + 5
)

+ x2 (Dx + 1)3) f = 0. (3.60)

These generate a module of this non-commutative algebra. This is an interesting example
coming from [89]. Equation (3.60) for a formal power series

∑
k akx

k is equivalent to the
recursion for ak

(k + 1)3ak+1 − (2k + 1)(17k2 + 17k + 5)ak + k3ak−1 = 0. (3.61)

We can set a−1 = 0, a0 = 1 and this recursion, as discussed in [89], gives the Apéry numbers

ak =
k∑
`=0

(
k

`

)2(
k + `

`

)2

. (3.62)

Given a basis fi of solutions to a linear differential equation one can construct the Wronskian

W (f1, · · · , fN) =

 f1 · · · fn
: · · · :

Dn−1
x f1 · · · Dn−1

x fn

 , (3.63)
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which satisfied the first order equation

DxW (f1, · · · , fN) = AW (f1, · · · , fN) (3.64)

where

A(x; q) =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
: : : : · · · : 0
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1

− α0(x)
αn(x)

− α1(x)
αn(x)

− α2(x)
αn(x)

− α3(x)
αn(x)

· · · −αn−2(x)
αn(x)

−αn−1(x)
αn(x)


. (3.65)

For fi, gi let U = W (f1, · · · , fN) and V = W (g1, · · · , gN) and suppose that they are two
bases of solutions to the differential equation. Then we see that

Dx(V
−1U) = −V −1(DxV )V −1U + V −1DxU = −V −1(AV )V −1U + V −1AU = 0. (3.66)

Therefore, we see that V −1U is a matrix of constants.

A system of equations is called hyper-geometric if it is linear in x. This is equivalent to
recursions between ak and ak−1. For example the equation for the exponential

Dx − x, kak − ak−1 = 0 (3.67)

is linear in x or has a recursion in ak and ak−1 and this is indeed hyper-geometric. However,
equation (3.60) is quadratic in x and we see a recursion between ak+1, ak, ak−1. Therefore as
an equation in a single variable it is not hyper-geometric. In this example, we will see that
this is in fact the specialisation of a hyper-geometric function in two variables.

Example 29 (Apéry numbers continued). As mentioned the function with ak given by equa-
tion (3.62) is a specialisation of a hyper-geometric function in two variables. In particular,
consider the function

f(x, y) =
∞∑
k=0

k∑
`=0

(
k

`

)2(
k + `

`

)2

xky` =
∞∑
k=0

k∑
`=0

(k + `)!2

`!4(k − `)!2x
ky` =

∞∑
k=0

k∑
`=0

ak,`x
ky`.

(3.68)
We see that

(k − `)2ak,` = (k + `)2ak−1,`

`4ak,` = (k − `+ 1)2(k + `)2ak,`−1

(3.69)

which implies f(x, y) satisfies

(Dx −Dy)
2f = (Dx +Dy)

2xf

D4
yf = (Dx −Dy + 1)2(Dx +Dy)

2yf.
(3.70)
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These are hyper-geometric as equations (3.69) only involve consecutive terms such as ak,`
and ak−1,` or equivalently as equations (3.70) are first order in x and y.

When finding solutions to equations (3.69) it is important to notice that there are some
special points in the k, ` lattice. In particular, when k = `, ` = 0 and k = −` − 1 there are
vanishing of coefficients of the relations between the ak,`. These walls break up the lattices
into regions. The layout of these walls imply that finite solutions to equation (3.69) holding
for all (k, `) ∈ Z2 will be forced to be zero on certain regions. These regions in this example
are displayed in Figure 29. We notice that choosing a0,0, a0,−1 and a−1,0 determines all formal
solutions of the form ∑

k,`∈Z

ak,`x
ky`. (3.71)

The solution for a0,−1 = 1 associated to the region ` ≤ k and ` ≤ −k − 1 is

ak,` =
(−`− 1)!4

(−k − `− 1)!2(k − `)!2 . (3.72)

While the solution for a−1,0 = 1 associated to the region ` ≤ −k − 1 and ` ≥ 0 is

ak,` =
(`− k − 1)!2

`!4(−k − `− 1)!2
. (3.73)

Given a linear differential equation we can construct it’s Newton polygon which gives various
information about the solutions to the equation. See for Example [188, Sec. 3.3]. The
Newton polygon keeps track of which monomials Dn

xx
m have non-zero coefficient in the

operator. However, the fact that equation (3.51) is inhomogenous leads to an ambiguity
in the degree of Dx. Notice that the degree in Dx can only decrease in equation (3.51).
Therefore, if we have an operator as in equation (3.54) define P to be the set of (n,m) ∈ Z
with αij 6= 0 and define the Newton polygon N(P ) to be convex hull of the set of points
with (`, k) with 0 ≤ ` ≤ n and k = m for some (n,m) ∈ P . This is then independent of the
particular choice of ordering of the operators Dx and x.

Using the Newton polygon of a linear differential operator, the Frobenius method allows the
construction of formal solutions to linear differential equations. They are of the form of
coefficients of the ε expansion of

exp(p(x−1))xr+ε
∞∑
k=0

akx
k . (3.74)

where p is some polynomial.
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k

` k − ` = 0

k + `+ 1 = 0

` = 0

Figure 3.2: The regions determined by the recursions in ak,` = (k+`)!2

`!4(k−`)!2 . The red lines
k − ` = 0, ` = 0, k + ` + 1 = 0 are determined by the vanishing of coefficients of ak,` in the
recursions (3.69). The small arrows in red indicate that the recursions imply ak,` are zero in
that region. The regions in blue indicate the regions that have no arrows pointing into them
and can therefore have non-zero values of ak,`.

The slopes of an edge of the Newton polygon determine the type of the exponential singularity
and therefore the p of the solution. Once the p is determined we get a new differential
equation for the solution with the exponential singularity removed where the left most edge
of the Newton polygon is now horizontal. To see this notice that

Dx exp

(
1

kxk

)
f̂(x) = − 1

xk
exp

(
1

kxk

)
f̂(x) + exp

(
1

kxk

)
(Dxf̂)(x)

= exp

(
1

kxk

)(
− 1

xk
+Dx

)(
f̂
)

(x) .

(3.75)

Therefore any positive slope on the left of the Newton polygon of some operator can be
removed by multiplying f by an appropriate exponential factor.

Using the vanishing of ak for k < 0 in the Ansatz (3.74), we can find a polynomial condition
on r called the indicial polynomial. In particular, it is the coefficient describing a0 in terms
of ak for k < 0. The different roots of the indicial polynomial lead to different solutions. If
the roots are not located at an integer then there will be a branch point at the origin and
if it is a negative integer then there will be a pole of that order. There is some degeneracy
when two roots are separated by an integer. In this case, one expands ε near the root and
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Figure 3.3: The Newton polygon associated to the operator in equation (3.78).

uses

xr+ε = xr
(

1 + ε log(x) +
ε2

2!
log(x)2 + · · ·

)
. (3.76)

The effect of the Ansatz (3.74) on the action of Dx on formal series is

Dxx
k+ε = (k + ε)xk+ε. (3.77)

Therefore, we see the Frobenius method takes the recursion for ak and shifts k 7→ k+ ε. We
can think of this as a deformation of the recursions for ak.

Once a solution for the left most edge is found, we apply the Theorem [188, Thm. 3.48] which
states that any Newton polygon with more than one slope comes from an operator that can
be factored. This factorisation then corresponds to a filtration of the space of solutions and
solving for the left most edge gives a solution in the largest space in the filtration. Removing
the left most factor of the factorisation we then have an operator with smaller order. We
can then solve inductively by applying the same procedure.

Example 30. Take the operator

xDx +
1

x
+ 2− 2x (3.78)

with Newton polygon given in Figure 3.3. This has one edge of slope 2. Therefore, we must
remove the slope by multiplying by exp(p(x−1)). Suppose that

f = exp

(
1

2x2
+

2

x

)
f̂(x) (3.79)
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is a solution then

0 =

(
xDx +

1

x
+ 2− 2x

)
f(x)

=

(
xDx +

1

x
+ 2− 2x

)
exp

(
1

2x2
+

2

x

)
f̂(x)

= exp

(
1

2x2
+

2

x

)
(xDx − 2x) f̂(x).

(3.80)

Therefore, the equation becomes (xDx − 2x)f̂ = 0. Then for

f̂(x) =
∞∑
k=0

akx
k+r , (3.81)

we find that (xDx − 2x)f̂ = 0 implies that

(k − 1 + r)ak−1 − 2ak−1 = 0 , (3.82)

and so
(r − 2)a0 = 0 . (3.83)

Now the assumption is that a 6= 0 (as of course this would amount to shifting r by 1), this
gives us the indicial polynomial

r − 2 = 0 . (3.84)

Therefore, we see that r = 2 and we can set a0 = 1. Then the recursion simply states that
ak = 0 for k > 0 and therefore we find the solution to the original differential equation

f = exp

(
1

2x2
+

2

x

)
x2, (3.85)

which generates this module.

Example 31 (Exponential integral continued). Consider the Frobenius deformation

(k + 1 + ε)ak+1 = ak. (3.86)

This has a natural solution
ak =

1

Γ(1 + k + ε)
. (3.87)

If we take

f(ε, x) =
∞∑
k=0

xk+ε

Γ(1 + k + ε)
= exp(x)ε

Γ(ε)− Γ(ε, x)

Γ(ε+ 1)
(3.88)
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Figure 3.4: The Newton polygon associated to the operator in equation (3.94).

we find

(Dx − x)f =
xε

Γ(ε)
= ε+O(ε2). (3.89)

In fact, we find that expanding in ε

f(ε, x) = exp(x) + exp(x)Ei(x)ε+O(ε2). (3.90)

Notice that
−1∑

k=−∞

xk+ε

Γ(1 + k + ε)
=

∞∑
k=0

(−1)k+1 k!

xk+1
ε+O(ε2) (3.91)

which gives the solution of the same inhomogenous equation around x ∼ ∞. Note we could
have considered

(k + ε)2ak − (k + ε)ak−1 = 0. (3.92)

The indicial polynomial in this case is ε2. Therefore, the solution to this recursion is the
same as the recursion (3.86) however the indicial polynomial indicates we should expand ε
to O(ε2). Notice that the solution (3.87) has a0 = Γ(1 + ε)−1. Therefore, if we took a0 = 1
we would find the solution

exp(x)Ei(x)− γ exp(x) (3.93)

where γ is the Euler-Mascheroni constant. This indicates the effect that choosing initial
conditions has on the answer and that having the freedom to choose can lead to more natural
answers in certain contexts. The second order equation that this satisfies is given by

(D2
x − xDx − x)f = Dx(Dx − x)f = 0 . (3.94)

Therefore, the Newton polygon is given in Figure 3.4. The top gives the solutions around
infinity and we see the factorisation for the different slopes, the factorially divergent solution,
and the exponential singularity.
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Example 32 (Apéry numbers continued). Consider equation (3.60). The indicial polyno-
mial is given by ε3. Therefore consider,

(k+1+ε)3ak+1(ε)−(2(k+ε)+1)(17(k+ε)2+17(k+ε)+5)ak(ε)+(k+ε)3ak−1(ε) = 0. (3.95)

Setting a0(ε) = 1 and a−1(ε) = 0, we see that when k = −1 only ε3a0(ε) appears in the
expression for a−2(ε). Notice that originally we had a wall so setting a−1 = 0 implied that
ak = 0 for k < 0. Here we see that ak = O(ε3) for all k < 0. Therefore, as indicated by
the indicial polynomial, expanding in ε near 0 to O(ε3) will give the basis of solutions to
equation (3.60). This is given in [89].

Remark 12. Notice that a translation x 7→ x+ c affects the operator

Dx = x
∂

∂x
7→ (x+ c)

∂

∂(x+ c)
= Dx +

c

x
Dx . (3.96)

Therefore when we have positive slopes these will generally be removed by applying an affine
transformation. Indeed, the positive slopes will only appear when we solve a differential
equation around an irregular singularity.

3.5 Optimal truncations

Solving differential equations using the Frobenius method around an irregular singularity
will lead to power series that are divergent such as

∞∑
k=0

(−1)k
k!

xk+1
. (3.97)

These solutions can approximate certain analytic functions around the irregular singularity.
Of course taking a truncated series to order N such as

N∑
k=0

(−1)k
k!

xk+1
, (3.98)

will lead to an O(aN+1x
N+1) order approximation of an analytic solution, which for equa-

tion (3.97) is given by a function2 such as

Ei(x) exp(x) . (3.99)

2Of course any two functions with this asymptotic series could differ by exponentially small corrections.
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However, when the divergent series has coefficients that behave in a certain way, we can
improve this approximation by taking the optimal truncation. For a divergent series,

f(x) =
∞∑
k=0

akx
k (3.100)

the optimal truncation is defined as the piecewise analytic function

f op(x) =

Nop(x)∑
k=0

akx
k (3.101)

where ∣∣aNop(x)x
Nop(x)

∣∣ = min{akxk : k ∈ Z≥0} . (3.102)

Note that more correctly, this should be defined for some neighbourhood of x as this smallest
value needs to be a locally generic condition. Considering the example in equation (3.97),
we see that for fixed x

(−1)k
k!

xk+1
(3.103)

reaches it’s minimum when∣∣∣(−1)k
k!

xk+1
(−1)k−1 xk

(k − 1)!

∣∣∣ =
k

|x| ∼ 1 . (3.104)

Therefore, its optimal truncation is given roughly by

b|x|c∑
k=0

(−1)k
k!

xk+1
. (3.105)

Notice that this jumps as |x| crosses integral radius circles around the origin by

|x|!
|x||x|+1

∼
√

2π|x| exp(−|x|)(1 +O(1/|x|)) as |x| → ∞ . (3.106)

Therefore, the associated error of the optimal truncation is exponentially small as opposed to
polynomially. For this example, we can compare this analysis with the Code 16. We can see
that the optimal truncation provides exactly the error with the function that we expected.
Of course if we had considered

Ei(x) exp(x) + exp(−7x/8) (3.107)

then we see in Code 17. Therefore, the optimal truncation allows us to see exponen-
tially small contributions to the asymptotics with some theoretical bound. In this exam-
ple, the optimal trunctation will see exponentially small corrections of order exp(rx) when
| exp(rx)| ≤ exp(|x|). Notice that the argument of rx then plays an important role.
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Lets consider this more generally for examples of the form of equation (3.97). Suppose that

f(x) =
∞∑
k=0

akx
k (3.108)

and

ak ∼ α
Γ(k + κ)

V k+κ
. (3.109)

Then the optimal truncation is given by

f op(x) =

|V−κ|∑
k=0

akx
k . (3.110)

This has error term

α
Γ(|V − κ|+ κ)

V |V−κ|+κ

∼ α
(|V − κ|+ κ− 1)|V−κ|+κ−3/2 exp(−|V − κ| − κ+ 1)

√
2π

V |V−κ|+κ
(1 +O(1/(|V − κ|+ κ))) .

(3.111)
Recently, Garoufalidis–Zagier [87] proposed a way to improve the optimal truncation for
certain asymptotic series using additional information of the behaviour of the coefficients of
the divergent series similar to previous works of Dingle, Berry, Howls [26, 27, 28, 50]. They
call this method smooth optimal truncation. To describe this method we first need a function
Eb(x) that solves the equation

x

|x|Eb+1(x)− Eb(x) =
Γ(|x| − b)
|x||x|−b . (3.112)

This can be solved for example by

Eb(x) =

∫ ∞
0

t|x|−b exp(−t|x|) dt

t− x
|x|
, (3.113)

where the integral is the Cauchy principle part when x = |x|. In [87], this functional equation
is also solved using formal asymptotic series. We will be content with this exact function.

Suppose that additionally to equation (3.109)

ak ∼
∞∑
`=0

α`
Γ(k − `+ κ)

V k−`+κ . (3.114)
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Then the smooth optimal truncation is defined to be

f smop(x; b) =

|V/x|−b∑
k=0

akx
k +
|x||V/x|−b
x|V/x|−b

∞∑
`=0

α`
V κ−`

∣∣∣ x
V

∣∣∣`−κEb−κ+`(V/x) , (3.115)

which is just an asymptotic expansion in general. The second sum can of course be truncated,
optimally truncated or even smooth optimally truncated to give increasing levels of preci-
sion. In our previous example, we can compute the smooth optimal truncation in Code 18.
Moreover, the error here is due to PARI/GP’s numerical integration with working precision
1000 digits. The Eb(x) function is closely related to the exponential integral Ei(x), which in
this case will give equality.

3.6 Approximating with rational functions
Padé approximates are a generalisation to Taylor series. Instead of approximating a function
around a point by polynomials, they approximate by rational functions with prescribed
degree of the numerator and denominator. Depending on the example, this can give a much
better approximation to a function in more complicated neighbourhoods than just disks
around a point. For example, if a Taylor series converges it does so with some radius of
convergence. If the function we are interested in has a pole or a branch point then the radius
can be at most the distance from the point we are expanding around to the singularity.
Sequences of Padé approximates can give convergent functions in a larger domain. For
example, any rational function will be given exactly globally by a limit of Padé approximates.

We can define the Padé approximate around a point for any analytic function. If f is an
analytic function with expansion

f(z) =
∞∑
k=0

akz
k , (3.116)

then suppose that there exists polynomials p(z), q(z) of degree m and n such that q(0) = 1
and

f(z)− p(z)

q(z)
+O(zm+n+1) = O(zm+n+1) , (3.117)

or equivalently
f(z)q(z)− p(z) +O(zm+n+1) = O(zm+n+1) . (3.118)

If these polynomials exist the rational function is unique. To see this, notice that if there
was another p1(z), q1(z) of degree m and n such that q1(0) = 1 and

f(z)− p1(z)

q1(z)
+O(zm+n+1) , (3.119)
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then
p(z)q1(z) = q(z)p1(z) +O(zm+n+1) , (3.120)

but p(z)q1(z), q(z)p1(z) are both polynomials of degrees m+ n and therefore

p(z)

q(z)
=

p1(z)

q1(z)
. (3.121)

Definition 11. If f is analytic and there exists p(z), q(z) of degree m,n such that

f(z)− p(z)

q(z)
+O(zm+n+1) = O(zm+n+1) (3.122)

then we define the [m/n] Padé approximate as

f [m/n](z) =
p(z)

q(z)
. (3.123)

Example 33 (Taylor series). The f [n/0](x) Padé approximates give the Taylor series ap-
proximation.

Example 34 (Non-existence of Padé approximates). If f(z) = z, then the f [0/n](x) Padé
approximate doesn’t exist as

p0

1 + q1z + · · · = p0 − p0q1z + · · · , (3.124)

and therefore p0 = 0 and p0q1 = 1, which cannot be simultaneously solved.

Padé approximates can be constructed from continued fractions. Recall, the hypergeometric
function for c /∈ Z≤0

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (3.125)

where
(x)k = x(x+ 1) · · · (x+ k − 1) , (3.126)

which when not a polynomial converges for |z| < 1. Gauss proved the following theorem.

Theorem A–23. [105, Thm. 6.1] For n ∈ Z≥0 let

α2n+1 = − (a+ n)(c− b+ n)

(c+ 2n)(c+ 2n+ 1)
, and α2n = − (b+ n)(c− a+ n)

(c+ 2n− 1)(c+ 2n)
. (3.127)
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For a, b, c ∈ C such that αn /∈ {0,∞}, the continued fraction

Φ(a, b; c; z) = 1 +
α1z

1 +
α2z

1 +
α3z

1 + · · ·

(3.128)

is convergent to a meromorphic function in the domain arg(z − 1) /∈ 2πZ, the convergence
is uniform for any compact set not containing poles of Φ, Φ is holomorphic at z = 0 and
Φ(a, b; c; 0) = 1, and for all |z| < 1 we have

Φ(a, b; c; z) =
2F1(a, b; c; z)

2F1(a, b+ 1; c+ 1; z)
(3.129)

Corollary 3. For a, c ∈ C define

β2n+1 = − (a+ n)(c+ n− 1)

(c+ 2n− 1)(c+ 2n)
, and β2n = − n(c− a+ n− 1)

(c+ 2n− 2)(c+ 2n− 1)
. (3.130)

such that βn 6= 0 for n ∈ Z≥0 then

f(a; c; z) =
1

1 +
β1z

1 +
β2z

1 +
β3z

1 + · · ·

, (3.131)

is convergent to a meromorphic function in the domain arg(z− 1) /∈ 2πZ, the convergence is
uniform for any compact set not containing its poles, is holomorphic at z = 0 and f(0) = 1,
and for all |z| < 1 we have

2F1(a, 1; c; z) = f(a; c; z) . (3.132)

This continued fraction is given by

f(a; c; z) =
1

1− az

c− 1(c− a)z

c+ 1− (a+ 1)cz

c+ 2− 2(c− a+ 1)z

c+ 3− (a+ 2)(c+ 1)z

c+ 4− 3(c− a+ 2)z

c+ 5− · · ·

. (3.133)
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A continued fraction of the form

z

1 +
α1z

1 +
α2z

1 +
α3z

1 + · · ·

, (3.134)

truncated at
z

1 +
α1z

1 +
α2z

1 +
α3z

1 +
· · ·

1 + αnz

, (3.135)

gives a rational function of degree b(n + 2)/2c over b(n + 1)/2c and this function is an
[b(n+ 2)/2c/b(n+ 1)/2c] Padé approximate, which can be proved by induction. We can use
this to prove the convergence of certain Padé approximates of the logarithm.

Example 35 (Padé approximates of the logarithm). From Corollary 3 and equation (3.133),
for |z| < 1

z2F1(1, 1; 2;−z) = log(1 + z) , (3.136)

and therefore for z ∈ C\R≤−1 and the principle branch

log(1 + z) =
z

1 +
1z

2 +
1z

3 +
4z

4 +
4z

5 +
9z

6 + · · ·

. (3.137)

Therefore, for f(z) = log(1 + z) and z ∈ C\R≤−1

lim
n→∞

f [(n+ 1)/n](z) = log(1 + z) (3.138)

with uniform convergence on any compact subset of C\R≤−1.
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<(z)

=(z)

−9 −8 −7 −6 −5 −4 −3 −2 −1

Figure 3.5: Plots of the poles and zeros of the [50/49] Padé approximate of log(1 + z). The
poles are in red and the zeros are in blue. One can see that, besides the zero at z = 0, the
poles and zeros are accumulating on the branch cut concentrated mainly around the branch
point z = −1.

To understand how the Padé approximates could possible converge to the logarithm we note
that the various poles and zeros of the rational functions will accumulate around the branch
cut R≤−1. This can can be seen using the following code in PARI/GP [20], whose output is
plotted in Figure 3.5.

1 polroots(numerator(bestapprPade(log (1+x+O(x^100)))))
2 polroots(denominator(bestapprPade(log (1+x+O(x^100)))))

This example shows the power of Padé approximates as opposed to Taylor series. For the
logarithm, the Padé approximates converge everywhere on the cut plane as opposed to a
disk of radius one. It also indicates that we can explore the behaviour of certain functions
using Padé approximates to see experimentally the existence of branch cuts and singularities.
Later in chapter 11, we will be interested in functions with logarithmic singularities and will
approximate their analytic continuations with Padé approximates. For some discussion of
the convergence of the Padé approximates in some general cases see [147, 178].

Remark 13. When numerically exploring the possible branch points of a function, it is
natural to consider various conformal maps around the point we are expanding around. This
can be used to switch which critical point is closer. In examples where we expect an analytic
continuation to some domain with certain singularities, these conformal maps can be used
to study the singularities by making them the closest singularity to the point of expansion.

3.7 Resummation and jumping

Factorially divergent formal power series arise in many different contexts. Importantly, they
arise from stationary phase approximations of integrals as discussed in sections 2.5, 2.8
and 4.1. To make sense of these divergent functions, we will use a method that constructs
analytic functions with the same asymptotics via Borel resummation. Suppose we have a
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divergent series

f(x) =
∞∑
k=0

akx
k . (3.139)

The Borel transform of this series is defined to be

B1f(ζ) =
∞∑
k=0

ak
Γ(λ+ k + 1)

ζλ+k . (3.140)

If this function is convergent, and has an analytic continuation with certain growth conditions
at infinity, then we can take it’s Laplace transform

L1B1f(x) =

∫ ∞
0

exp(−ζ)Bf(ζx)dζ . (3.141)

If we expand the series involved and notice that∫ ∞
0

exp(−ζ)(ζx)kdζ = Γ(k + 1)xk , (3.142)

we see that formally this function should have the same asymptotic series and with sufficient
conditions we can see that it will satisfy the same differential equations. Indeed, having the
same asymptotic series is a conseqeuce of Watson’s lemma.

Theorem A–24 (Watson’s lemma). [151, Thm. 3.1][141, Sec. 2.1] If f(x) is a function
from the positive reals with finitely many discontinuities and has an asymptotic expansion as
x→ 0

f(x) ∼
∞∑
k=0

akx
k , (3.143)

with a0 6= 0, then, if for small enough x the integral converges, we have as x→ 0∫ ∞
0

exp(−ζ)(ζx)λf(ζx)dζ ∼
∞∑
k=0

akΓ(λ+ k + 1)xλ+k . (3.144)

Therefore, we define the Borel resummation of a formal series f(x) =
∑∞

k=0 akx
k to be

L1B1f(x) if it exists. By Watson’s lemma this provides an analytic function with the same
asymptotics as the original formal series.

Example 36 (Exponential integral). Recall the solution to the equation

(Dx − x)f = 1 (3.145)
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in formal power series given by

f(x) =
∞∑
k=0

(−1)k
k!

xk+1
. (3.146)

Take the function

g(x) =
1

x
f

(
1

x

)
=
∞∑
k=0

(−1)kk!xk. (3.147)

We can take the Borel transform

B1g(ζ) =
∞∑
k=0

(−1)kζk =
1

1 + ζ
, (3.148)

and then the Laplace transform

L1B1g(x) =

∫ ∞
0

exp(−ζ)

1 + ζx
dζ =

∫ ∞
1
x

exp
(
−ζ + 1

x

)
ζx

dζ = −1

x
Ei

(
−1

x

)
exp

(
1

x

)
,

(3.149)
and we see that f(x) = −Ei(−x) exp(x) is a solution3 to the differential equation. For
comparison take

g(x) = f

(
1

x

)
=
∞∑
k=0

(−1)kk!xk+1. (3.150)

Then

B1g(ζ) =
∞∑
k=0

(−1)k
ζk+1

k + 1
= log(1 + x) . (3.151)

Similarly,

L1B1g(x) =

∫ ∞
0

exp(−ζ) log(1 + ζx)dζ = −Ei

(
−1

x

)
exp

(
1

x

)
, (3.152)

When one has an asymptotic series computed numerically with a finite number of coefficients
then one can attempt to numerically compute its Borel resummation. In practice, the most
difficult part of this computation is giving a good approximation to the analytic continuation.
This can be done using Padé approximates given in Section 3.6. For example, one could use
the following PARI/GP [20] code.

1 borel(a) = serconvol(a,exp(x));
2 pade(a,N) = bestapprPade(a+O(x^N));
3 {resum(tau ,a,N) = local(pb); pb=pade(borel(a),N);intnum(xi=0,[+oo ,1],exp(-

xi)*subst(pb ,x,xi*tau))};

3Note that Ei(−x) = −Ei(x)± πi.
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Of course when the Borel transform of a formal series is analytic but has poles or branch
cuts, the Laplace transform will jump as the ray defined by input variable crosses one of
these singularities. This jumping is captured by the Stokes automorphism. For example, if
we have a basis of solutions to a linear differential equation satisfied by the Borel transform
then on both sides of an isolated critical point. Therefore, on both sides there will be a
matrix relating the two bases of solutions.

Example 37 (Stokes automorphism for the exponential integral). Taking

g(x) =
∞∑
k=0

(−1)kk!xk , (3.153)

again, we see that for x ∈ R≥0

lim
ε→∞
L1B1g(exp((π − ε)i)x)− L1B1g(exp((π + ε)i)x)

= 2πi Resζ=−1/x
exp(−ζ)

1 + ζx
(z + 1/x)dζ =

2πi

x
exp

(1

x

)
.

(3.154)

So we see that the Stokes automorphism associated to the Wronskian of 2πi exp(x) and
exp(x)Ei(x) is given by (

1 1
0 1

)
. (3.155)





Chapter 4

Sums, integrals and q–hypergeometric
functions

4.1 From sums to integrals to asymptotics
We will discuss three different methods that turn sums into some kind of integrals. They
will start real analytic and turn more complex analytic. The basic question is to determine
the behaviour of sums of the form

M∑
n=0

f(n) (4.1)

where f is a smooth function. The fact that f is a smooth function allows us to gain
additional information about the behaviour of the sum. Firstly, the Bernoulli polynomials
Bn(x) are the unique polynomials satisfying∫ y+1

y

Bn(x) dx = yn . (4.2)

For n 6= 1 we have Bn(0) = Bn = Bn(1) and note that Bn(0) = −1/2 = −B0(1) in this part
we will take B1 = −1/2. These have a generating function

exp(xt)

exp(t)− 1
=

∞∑
n=0

Bn(x)

n!
tn−1 =

∞∑
n=0

n∑
k=0

Bn−k

k!(n− k)!
xktn−1 . (4.3)

The first few polynomials are

B0(x) = 1 , B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x , B4(x) = x4 − 2x3 + x2 − 1

30
.

(4.4)

We can use integration by parts and the Bernoulli polynomials to deduce following formula.

171
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Theorem A–25 (Euler–Maclaurin summation formula). [151, 205, 203] For f a smooth
function in the positive reals with infinity and M ∈ Z, we have

M∑
k=0

f(k) =

∫ M

0

f(x) dx+
f(0)

2
+
f(M)

2
+

N−1∑
n=1

(−1)n+1Bn+1

(n+ 1)!
(f (n)(M)− f (n)(0))

+ (−1)N+1

∫ M

0

f (N)(x)
BN(x− bxc)

N !
dx .

(4.5)

In a more specific situation, we find an even better formula. This formula turns out to be
extremely important for proving the basic properties of functions discussed in part IV.

Theorem A–26 (Poisson summation formula). [205] If f is a smooth function on the reals
with positive and negative infinity, then for the Fourier transform

f̂(y) =

∫ ∞
−∞

f(x) exp(2πixy) dx (4.6)

we have ∑
k∈Z

f(k) =
∑
k∈Z

f̂(k) . (4.7)

Proof. The function
∞∑

k=−∞

f(x+ k) (4.8)

is periodic with period 1 and therefore has a Fourier series representation

∞∑
k=−∞

f(x+k) =
∑
`∈Z

exp(2πi`x)

∫ 1

0

∞∑
k=−∞

f(ξ+k) exp(−2πiξ`) dξ =
∑
`∈Z

exp(2πi`x)f̂(−`) .

(4.9)

The final method uses complex analysis. Assuming f is meromorphic on some domain Ω
containing 0, . . . ,M and continuous on its boundary then from the residue theorem

1

2i

∫
∂Ω

cot(πz)f(z) dz =
M∑
k=0

f(k) +
∑

z0∈Ω−{0,...,k}

πResz=z0 cot(πz)f(z) dz . (4.10)

This idea is quite versatile and can be adapted to ones needs. However, there are some
additional tricks, which can be used. Adding some assumptions on f we can present the
standard version of the Abel–Plana summation method.
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Figure 4.1: Contour for Abel–Plana summation.

Theorem A–27 (Abel–Plana summation formula). [151, Chp. 8, Sec. 3] If f(z) is con-
tinuous for 0 ≤ <(z) ≤ M and analytic on the interior and f(z) = o(exp(2π|=(z)|) as
|=(z)| → ∞ uniformly in 0 ≤ <(z) ≤M , then

M∑
k=0

f(k) =

∫ M

0

f(z) dz +
1

2
f(0) +

1

2
f(M)

+ i

∫ ∞
0

f(iy)− f(M + iy)− f(−iy) + f(M − iy)

exp(2πy)− 1
dy .

(4.11)

Proof. To prove this one uses the following trick. Take the contour in Figure 4.1. Then one
has

M−1∑
k=1

f(k) =
1

2i

∫
γ

cot(πz)f(z) dz . (4.12)

Then adding the integral of f(z) to both sides and with the assumption f is analytic1 on

1For more general f , this step may be altered by the inclusion of terms coming from a residue or branch
cut.
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the domain we rewrite
M−1∑
k=1

f(k)−
∫ M−δ

δ

f(z) dz =
1

2i

∫
γ

cot(πz)f(z) dz +
1

2

∫
γ1

f(z) dz − 1

2

∫
γ2

f(z) dz

=

∫
γ1

f(z)

1− exp(−2πiz)
dz +

∫
γ2

f(z)

exp(2πiz)− 1
dz .

(4.13)

To finish, we send K →∞ and note that the contours horizontal to the real vanish, compute
the residues around the small semicircles at 0 and M , and collect the remaining vertical
integrals into one integral.

Now these methods give many ways to convert sums into integrals. This indicates that un-
derstanding the asymptotic properties of integrals through something like Watson’s lemma,
given in Theorem 31, will allows us to understand the asymptotics of these sums. We can
apply Watson’s lemma to give Laplace’s method. Consider and integral of the form

I(z) =

∫
γ

exp(−p(ξ)/z)q(ξ)dξ (4.14)

where γ is locally passing through 0 and p′(0) = 0 is simple. Then take

ζ(ξ)2 = p(ξ)− p(0) . (4.15)

Supposing that
p(ξ) ∼ p0 +

∑
k=2

pkξ
k and q(ξ) ∼

∑
k=0

qkξ
k , (4.16)

we have

ζ(ξ) ∼ ξ

√∑
k=2

pkξk−2 =
√
p2ξ +

p3

2
√
p2

ξ2 +
4p4p2 − p2

3

8
√
p2

3 + · · · , (4.17)

and so
ξ(ζ) =

1√
p2

ζ − p3

2p2
2

ζ2 − 4p4p2 − 5p2
3

8
√
p2

7 ζ3 + · · · . (4.18)

Then
I(z) = exp(−p(ξ0)/z)

∫
γ

exp(−ζ2/z)q(ξ(ζ))
dξ(ζ)

dζ
dζ . (4.19)

Therefore, let

f(ζ) = q(ξ(ζ))
dξ(ζ)

dζ

=
q0√
p2

+
p2q1 − p3q0

p2
2

ζ +
8p2

2q2 − 12p2p3q1 + (15p2
3 − 12p2p4)q0

8
√
p2

7 ζ2 + · · · .
(4.20)
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To understand the asymptotics of this integral we then notice that taking δ ∈ R>0 and
letting x = ±√σ we have∫ δ

−δ
exp(−x2/z)f(x)dx =

∫ δ2

0

exp(−σ/z)(f(
√
σ) + f(−√σ))

dσ

σ1/2
. (4.21)

Therefore, if f(x) ∼∑∞k=0 akx
k by Watson’s lemma, given in Theorem 31, we have∫ δ

−δ
exp(−x2/z)f(x)dx ∼

∞∑
k=0

Γ(k + 1/2)a2kz
k+1/2 . (4.22)

To relate the integral in equation (4.19) to the integral in equation (4.21) we deform the
contour so that locally around the critical point the contour takes the path of steepest
descent so that the real part of ζ is increased the most. For a given contour, choosing the
best deformation to apply Watson’s lemma to will depend on the context. We can give a
general result here with some assumptions.

Theorem A–28 (Laplace’s method). [151, Ch. 4, Sec. 7.3, Thm. 7.1] If p(ξ), q(ξ) are
holomorphic on some domain Ω, γ some contour with interior contained in Ω, p′(ξ) has
one simple zero at ξ0 in Ω, θ2 ≤ arg(z) ≤ θ1, |z| ≤ M ∈ R>0 and θ2 − θ1 < π, and
<(zp(ξ)− zp(ξ0)) > 0 on γ except at ξ0 and bounded uniformly away from zero with respect
to arg(z) at the endpoints of γ along γ, then when the integral converges uniformly and
absolutely with respect to z on γ we have the following asymptotic expansion∫

γ

exp(−p(ξ)/z)q(ξ)dξ ∼ exp(−p(ξ0)/z)
∞∑
k=0

Γ(k + 1/2)a2kz
k+1/2 (4.23)

where locally around ξ0 we have ζ(ξ)2 = p(ξ)− p(ξ0) and

q(ξ(ζ))
dξ(ζ)

dζ
=

∞∑
k=0

akζ
k . (4.24)

4.2 The dilogarithm function

Before applying some of the methods previously discussed, we need to introduce some im-
portant special functions. For |z| < 1, we define the absolutely convergent functions called
the k-th polylogarithm

Lis(z) =
∞∑
k=1

zk

ks
. (4.25)
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For s > 1, we see that

lim
x→1−

Lis(x) = ζ(s) =
∞∑
k=1

1

ks
. (4.26)

These functions satisfy the following easily seen relation

Lis(z) = z
∂

∂z
Lis(z) . (4.27)

Now notice that
Li0(z) =

z

1− z . (4.28)

Therefore, from equation (4.27), for k ∈ Z≤0

Lik(z) ∈ Z[z](1− z)k−1 . (4.29)

For k ∈ Z≤0, these functions satisfy the relation

Lik(z) + (−1)kLik(z
−1) = −δk,0 , (4.30)

As Lik(0) = 0, we can define an analytic continuation of Lik(z) for k ∈ Z>0 for z ∈ C−R≥1

via integration. For example,
Li1(z) = − log(1− z) . (4.31)

Then we define the dilogarithm for z ∈ C − R≥1 such that for a contour contained in the
same domain

Li2(z) = −
∫ z

0

log(1− ξ)dξ
ξ
. (4.32)

The dilogarithm has a non–commutative monodromy group. Indeed, taking any loop con-
fined to |z| < 1 will give give the same valued at both ends. However, if one takes a loop in
C−R≤0 around ξ = 1 to the point z, as shown in Figure 4.2, then we see that as we shrink
ε→ 0 we get

−
∫
γ

log(1− ξ)dξ
ξ

= −
∫
γ1+γ2

log(1− ξ)dξ
ξ
−
∮
γ3+γ4

(log(1− ξ)− 2πi)
dξ

ξ

= Li2(z) + 2πi

∫ z

1

dξ

ξ
= Li2(z) + 2πi log(z) .

(4.33)

Now we see that although it appeared that Li2(z) did not have a singularity at z = 0, this will
acquire a singularity once we take a loop around ξ = 1. This also shows that the monodromy
action is non–commutative. Therefore, in general we find that the various branches of the
Riemann surface associated to the dilogarithm will have values in the set

Li2(z) + 2πi log(z)Z + (2πi)2Z . (4.34)
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Figure 4.2: Contour giving non–commutative monodromy of Li2.

Importantly, the dilogarithm satisfies the following functional equations

Li2

(1

z

)
= −Li2(z)− π2

6
− 1

2
log(−z)2

Li2(1− z) = −Li2(z) +
π2

6
− log(z) log(1− z)

Li2(z2) = 2
(
Li2(z) + Li2(−z)

) (4.35)

and the five term relation

Li2(x) + Li2(y) + Li2

( 1− x
1− xy

)
+ Li2(1− xy) + Li2

( 1− y
1− xy

)
=

π2

6
− log(x) log(1− x)− log(y) log(1− y) + log

( 1− x
1− xy

)
log
( 1− y

1− xy
)
.

(4.36)

Finally, it satisfies a distribution property

Li2(x) = n
∑
zn = x

Li2(z) . (4.37)

For a discussion of the many fascinating properties of these functions consult [206].

4.3 Asymptotics of the Pochhammer symbol
The asymptotics of the q–Pochhammer symbol from definition 14

(x; q)∞ =
∞∏
k=0

(1− qkx) , (4.38)
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when q → 1 is of fundamental importance to our examples of interest coming from quantum
topology. This is due to the expression of the R matrix given in Theorem 14. To calculate
this behaviour formally we can use the following lemma.

Lemma 3. [206, Prop. 2] For |x| < 1 and |q| < 1 we have

log(x; q)∞ =
∞∑
n=1

xn

n(qn − 1)
. (4.39)

The proof is completely analogous to the proof of Lemma 7. Using this expression we can
formally take q = e(τ), change the order of summation and expand in τ to find

log(e(mτ)x; e(τ))∞ =
∞∑
n=1

e(mnτ)xn

n(e(nτ)− 1)
=

∞∑
n=1

∞∑
k=0

Bk(m)xn(2πinτ)k−1

k!n

∼
∞∑
k=0

Bk(m)(2πiτ)k−1

k!

∞∑
n=1

xn

n2−k =
∞∑
k=0

Bk(m)(2πiτ)k−1

k!
Li2−k(x) .

(4.40)
For example, taking m = 0 and fixed x with |x| < 1 we have

log(x; e(τ))∞ ∼ Li2(x)(2πiτ)−1 + 2πiZ +
1

2
log(1− x) +

x

1− x
2πiτ

12
− x2 + x

(1− x)3

(2πiτ)3

720
+ · · · .
(4.41)

This computation is purely formal2 but gives the correct answer. Firstly, this can be checked
numerically in the PARI/GP [20] Code 19 and then proved in the following lemma.

Lemma 4. [88, Lem. 2.1] For δ ∈ R>0, as ~→ 0 with δ < arg(τ) < π/2− δ, and x and m
such that δ < arg(e(mτ)x) < −δ and δ < arg(x) < −δ we have

log(e(mτ)x; e(τ))∞ ∼
∞∑
k=0

Bk(m)(2πiτ)k−1

k!
Li2−k(x) + 2πiZ . (4.42)

Proof. We have

log(e(mτ)x; e(τ))∞ ∈
∞∑
n=0

log(1− e((n+m)τ)x) + 2πiZ . (4.43)

Note that
Li1(x) = − log(1− x) , (4.44)

2Compare this kind of formal computation to the remarks in [151, Ch. 1, Sec.1] in relation to the
exponential integral.
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and
∂

∂n
Lik(e((n+m)τ)x) = 2πiτLik−1(e((n+m)τ)x) . (4.45)

Applying the Euler–Marlaurin summation formula from Theorem 25, we find that

M∑
n=0

log(1− e((n+m)τ)x)

=

∫ M

0

log(1− e((ξ +m)τ)x) dξ

+
log(1− e(mτ)x)

2
+

log(1− e((M +m)τ)x)

2

+
N−1∑
n=1

(−1)n+1Bn+1(2πiτ)n

(n+ 1)!
(Li1−n(e(mτ)x)− Li1−n(e((M +m)τ)x))

+ (−1)N(2πiτ)N
∫ M

0

Li1−N(e((ξ +m)τ)x)
BN(ξ − bξc)

N !
dξ .

(4.46)

Then note that∫ M

0

log(1− e((ξ +m)τ)x) dξ = − 1

2πiτ
Li2(e((M +m)τ)x) +

1

2πiτ
Li2(e(mτ)x) . (4.47)

Then our assumption on ~ implies that as M →∞ we have

lim
M→∞

∫ M

0

log(1− e((ξ +m)τ)x) dξ =
1

2πiτ
Li2(e(mτ)x) . (4.48)

Similarly, for k < 2
lim
M→∞

Lik(e((M +m)τ)x) = 0 . (4.49)

Finally, we note that Lik(0) = 0 and Lik(z)(1− z)1−k for k ∈ Z≤0 is a polynomial. Then by
our assumptions on x,m and ~, there exists L(N) independent of x,m, ~ such that

|Li1−N(e((ξ +m)τ)x)| < L(N)|e(ξτ)| . (4.50)

Therefore, there exists P (N) such that∣∣∣∣ ∞∑
n=0

log(1− e((n+m)τ)x)− 1

2πiτ
Li2(e(mτ)x)

− log(1− e(mτ)x)

2
−

N−1∑
n=1

(−1)n+1Bn+1(2πiτ)n

(n+ 1)!
Li1−n(e(mτ)x)

∣∣∣∣ ≤ |2πiτ |NP (N) .

(4.51)
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Now for ~ small (w.r.t. fixed m and x)

Lik(e(mτ)x) =
∞∑
`=0

Lik−`(x)
(2πimτ)`

`!
(4.52)

and therefore, noting that Bn = 0 for odd n > 1, considering that

N∑
n=0

Bn(2πiτ)n−1

n!
Li2−n(e(mτ)x) =

N∑
n=0

∞∑
`=0

Bn(2πiτ)n+`−1m`

n!`!
Li2−n−`(x)

=
N∑
n=0

n∑
`=0

Bn−`(2πiτ)n−1m`

`!(n− `)! Li2−n(x) +O(τN) =
N∑
n=0

Bn(m)(2πiτ)n−1

n!
Li2−n(x) +O(τN) ,

(4.53)
completes the proof.

This analysis fails to give an answer when x = 1. Therefore, we need to apply a different
method. Refining this can be done in a similar way described in [205]. This will be explored
in the next Section 4.4. For now, we will extend this result to the case when q tends to other
roots of unity e(a/c). The main tool to deal with this is to use the previous result with the
identity

(
e
(
m
aτ + c

cτ + d

)
x; e
(aτ + c

cτ + d

)
)∞ =

|c|−1∏
`=0

(
e
(

(m+ `)
aτ + c

cτ + d

)
x; e
( −|c|
c2τ + cd

))
∞
, (4.54)

which follows from

aτ + b

cτ + d
=

acτ + bc

c2τ + cd
=

acτ + ad− 1

c2τ + cd
=

a

c
− 1

c2τ + cd
. (4.55)

Corollary 4. [88, Lem. 2.1] For a/c ∈ Q (with a, c coprime) and δ ∈ R>0, as τ → 0 with
π/2 + δ < arg(−|c|/(c2τ + cd)) < −π/2− δ, and x and m such that for ` = 0, . . . , c− 1 we
have δ < arg(e((m+ `)(aτ + b)/(cτ + d))x) < −δ and δ < arg(x) < −δ we have

log

(
e
(
m
aτ + b

cτ + d

)
x; e
(aτ + b

cτ + d

))
∞

∼
∞∑
k=0

(−2πi|c|)k−1

(c2τ + cd)k−1k!

|c|−1∑
`=0

Bk

(m+ `

|c|
)

Li2−k

(
e
(

(m+ `)
a

c

)
x
) (4.56)

for γ = [a, b; c, d] ∈ SL2(Z) and as τ →∞.
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This is numerically verified in Code 20. We can take for γ = [a, b; c, d] ∈ SL2(Z)

q̃γ = e
(aτ + b

cτ + d

)
= e

(a
c
− 1

c2τ + cd

)
= e

(a
c

)
e
( τ̃γ
|c|
)
, (4.57)

where
τ̃γ = − |c|

c2τ + cd
. (4.58)

Then the asymptotics take the form

log
(
q̃mγ x; q̃γ

)
∞ ∼

∞∑
k=0

(2πiτ̃γ)
k−1

k!

|c|−1∑
`=0

Bk

(m+ `

|c|
)

Li2−k

(
e
(

(m+ `)
a

c

)
x
)
. (4.59)

Definition 12 (Asymptotic cyclic dilogarithm). For m,x ∈ C and q = e(a/c) with a/c ∈ Q
define

∆(m,x; q) =

|c|−1∏
`=0

(
1− e

(
(m+ `)

a

c

)
x
) 1

2
−m+`
|c|

. (4.60)

Using this function with equation (4.37), we have

(
q̃mγ x; q̃γ

)
∞ = exp

(
Li2
(
e(ma|c|/c)x|c|

)
2πi|c|τ̃γ

)
∆
(
m, z; e

(a
c

))
(1 +O(τ̃γ)) . (4.61)

In these formulae it is extremely important to use the principle branches of the various
roots. Moreover, one should not combine factors in the products in ways not respecting the
branching properties. Notice that that only dependence on γ as opposed to a/c ∈ Q is stored
in τ̃γ.

4.4 Integral formula for the Pochhammer symbol
Lemma 4 does not allow for x = 1. This is an extremely important example. When x = 1
and m = 1 we obtain the simple formula

log(e(τ); e(τ))∞ ∼ −
2πi

24τ
− 1

2
log(τ) +

2πi

8
− 2πiτ

24
+O(τN) . (4.62)

This formula can be deduced from the Euler–Maclaurin formula with some additional analysis
at the end points [205]. We want to reproduce these results. In another direction, the infinite
Pochhammer is only convergent when |q| < 1, however, there is an integral expression that
captures all of the asymptotics and is convergent in a larger domain. The basic idea is to shift
our analysis to the more complex world and use the Abel–Plana summation method. This
results in the following theorem, which should be equivalent to the results of [29, 58, 198].
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Theorem A–29. There exists a function ψ(τ,m, z,M) such that for m ∈ C, z ∈ C−2πiZ,
M ∈ Z and <(τ) > 0 as τ → 0 we have

(e(mτ + z); e(τ))M+1

= (e(m+ z/τ − d<(mτ + z)e/τ ; e(−1/τ))b<(Mτ)c exp
(
ψ(τ,m, z,M)

)
.

(4.63)

Moreover,

ψ(τ,m, z,M) = ψ
(
τ,m+

1

τ
, z,M

)
= ψ(τ,m, z + 1,M) = ψ

(
τ,m, z,M +

1

τ

)
. (4.64)

and explicitly,

ψ(τ,m, z,M) =
1

2πiτ
Li2(e(mτ + z))− 1

2πiτ
Li2(e((M +m)τ + z))

+
1

2
log(1− e(mτ + z)) +

1

2
log(1− e((M +m)τ + z))

+
i

τ

∫ ∞
0

log(1− e((iy/τ +m)τ + z))− log(1− e((−iy/τ +m)τ + z))

e(−iy/τ)− 1
dy

− i

τ

∫ ∞
0

log(1− e((M + iy/τ +m)τ + z))− log(1− e((M − iy/τ +m)τ + z))

e(−iy/τ)− 1
dy .

(4.65)

Proof. Suppose that <(τ) > 0. Consider the contour γ depicted in Figure 4.3. We then have

M−1∑
n=1

log(1− e((n+m)τ + z)) =
1

2i

∫
γ

cot(πξ) log(1− e((ξ +m)τ + z))dξ . (4.66)

Notice that the branch cuts of the integral are given by

1− e((ξ +m)τ + z) ∈ R≤0 (4.67)

which is the same as
ξ ∈ −m− z

τ
+
−i
τ
R≥0 +

1

τ
Z . (4.68)

Then applying the same trick as used the Abel–Plana summation formula of Theorem 27 we
have

M−1∑
n=1

log(1− e((n+m)τ + z))−
∫
γ0

log(1− e((ξ +m)τ + z))dξ

=

∫
γ1

log(1− e((ξ +m)τ + z))

1− e(−ξ) dξ +

∫
γ2

log(1− e((ξ +m)τ + z))

e(ξ)− 1
dξ .

(4.69)
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Figure 4.3: Contour used for summation methods for the Pochhammer symbol.

Firstly, notice that, using the branching of the logarithm, that the limit as K → ∞ of the
integrals around the branch cuts are given by

∫ 0

−∞

2πi

e(iy/τ −m− (z − k)/τ)− 1

i

τ
dy = [log(1− e(−iy/τ +m+ (z − k)/τ))]0−∞

= log(1− e(m+ z/τ − k/τ)) .

(4.70)

Secondly, we notice that as we are using the principle branches of the polylogarithms that
the limit of the integral along γ0 as δ → 0 is given by

∫
γ0

log(1−e((ξ+m)τ +z))dξ =
1

2πiτ
Li2(e(mτ +z))− 1

2πiτ
Li2(e((M +m)τ +z)) . (4.71)

The integrals along the horizontal contours with imaginary part ±K both vanish as the
integrand decays uniformly and exponentially as K → ∞. This is also uniform in M .
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Therefore,

M∑
n=0

log(1− e((n+m)τ + z)) =
1

2πiτ
Li2(e(mτ + z))− 1

2πiτ
Li2(e((M +m)τ + z))

+
1

2
log(1− e(mτ + z)) +

1

2
log(1− e((M +m)τ + z))

+

<((M+m)τ+z)>k><(mτ+z)∑
k∈Z

log(1− e(m+ z/τ − k/τ))

+
i

τ

∫ ∞
0

log(1− e((iy/τ +m)τ + z))− log(1− e((−iy/τ +m)τ + z))

e(−iy/τ)− 1
dy

− i

τ

∫ ∞
0

log(1− e((M + iy/τ +m)τ + z))− log(1− e((M − iy/τ +m)τ + z))

e(−iy/τ)− 1
dy .

(4.72)

This equality is numerically verified in the PARI/GP [20] Code 21. We can recover the
previous result of Lemma 4 by analysing the asymptotics of the integrals. For this, notice
that ∫ ∞

0

ya

exp(2πy)− 1
dy =

ζ(a+ 1)Γ(a+ 1)

(2π)a+1
. (4.73)

Therefore, for `+ 1 ∈ 2Z>0 we have

∫ ∞
0

y`

exp(2πy)− 1
dy = (−1)(`−1)/2 B`+1

2(`+ 1)
. (4.74)

Therefore, we see that for ` ∈ Z

∫ ∞
0

(iy)` − (−iy)`

exp(2πy)− 1
dy = ((i)` − (−i)`)(−1)(`−1)/2 B`+1

2(`+ 1)
=

{
0 if ` is even

i B`+1

(`+1)
if ` is odd .

(4.75)
Note that as the following integral exponentially converges, we can extract any finite number
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of polynomial terms to find

− i
∫ ∞

0

− log(1− e((iy +m)τ + z))− log(1− e((−iy +m)τ + z))

e(−iy)− 1
dy

= −i
N−1∑
`=0

Li1−`
(
e(mτ + z)

)
(2πiτ)`

`!

∫ ∞
0

(iy)` − (−iy)`

e(−iy)− 1
dy +O(τN)

=
N−1∑
`=1

Li1−`
(
e(mτ + z)

)
(2πiτ)`

`!

B`+1

`+ 1
+O(τN)

=
N∑
`=2

B`(2πiτ)`−1

`!
Li2−`

(
e(mτ + z)

)
+O(τN) .

(4.76)

This together with the first few terms of equation 4.72 then we have all the terms coming
from equation 4.53 and the asymptotics of Lemma 4 follow.

We can find an expression for c < 0 (which can always be done by choosing multiplying all
a, b, c, d, z by −1)

(
e
(
m
aτ + b

cτ + d
+

z

cτ + d

)
; e
(aτ + b

cτ + d

))
cM+c

=

c−1∏
`=0

(
e
(

(m+ `)
aτ + b

cτ + d
+

z

cτ + d

)
; e
( 1

cτ + d

))
M+1

=
c−1∏
`=0

(
e
(

(m+ `)(aτ + b) + z −
⌈
<
(

(m+ `)
aτ + b

cτ + d
+

z

cτ + d

)⌉
(cτ + d)

)
; e(−cτ)

)
b<(Mτ)c

× exp

(
ψ
( 1

cτ + d
, z − (m− `)

c
,
a

c
(m+ `),M

))
=
(
e
(
m(aτ + b) + z −

⌈
<
(
m
aτ + b

cτ + d
+

z

cτ + d

)⌉
cτ
)

; e(τ)
)
b<(Mcτ)c

× exp

( c−1∑
`=0

ψ
( 1

cτ + d
, z − (m− `)

c
,
a

c
(m+ `),M

))
=
(
e
(
m(aτ + b) + z −

⌈
<
(
m
aτ + b

cτ + d
+

z

cτ + d

)⌉
cτ
)

; e(τ)
)
b<(cMτ)c

exp

(
ψγ

(
τ,m, z, cM

))
.

(4.77)
where we note that a+ cZ ∈ (Z/cZ)×.
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4.5 Asymptotics of the Pochhammer symbol again
With the integral expression of Theorem 29 we can get more and prove the following asymp-
totics we couldn’t with Euler–MacLaurin3 when z ∈ 2πiZ.

Lemma 5. For fixed m ∈ C as τ → 0 we have

(e(mτ); e(τ))∞
(e(m− d<(mτ)e/τ); e(−1/τ))∞

∼ (−2πimτ)
1
2
−m mm

Γ(m)

√
2π

m
exp

(
B0(m)(2πiτ)−1

0!
ζ(2) +

∞∑
k=2

Bk(m)(2πiτ)k−1

k!
ζ(2− k)

)
.

(4.78)

Proof. Firstly, notice that

log(1− e((iy +m)τ)) = log(−2πi(iy +m)τ) +
∞∑
`=1

B`

` · `! (iy +m)`(−2πiτ)` . (4.79)

Then we find that∫ ∞
0

log(1− e((iy +m)τ))− log(1− e((−iy +m)τ))

e(−iy)− 1
dy

=

∫ ∞
0

log(−2πi(iy +m)τ)− log(−2πi(−iy +m)τ) + πi((iy +m)− (−iy +m))τ

e(−iy)− 1
dy

+
N−1∑
`=1

B` · (−2πiτ)`

` · `!

∫ ∞
0

((iy +m)` − (−iy +m)`)

e(−iy)− 1
+O(τN)

= im+ i
1

2
log
(Γ(m)Γ(m+ 1)

2πm2m

)
+ i

N−1∑
`=1

B` · (−2πiτ)`

` · `!

b(`−1)/2c∑
k=0

(
`

2k + 1

)
m`−2k−1 B2k+2

2k + 2
+O(τN)

(4.80)
where we have used the identity∫ ∞

0

log(−2πi(iy +m)τ)− log(−2πi(−iy +m)τ)

e(−iy)− 1
dy

= im+
i

2
log
(Γ(m)Γ(m+ 1)

2πm2m

)
,

(4.81)

3This could be done directly with Euler–Maclaurin using methods discussed for example in [205] combined
with the analysis in [88, 73].
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which can be proved by for example differentiating in m and checking boundary conditions.
Then using equation (4.35) we have

1

2πiτ
Li2(e(mτ)) =

1

2πiτ

(
− Li2(1− e(mτ)) +

π2

6
− 2πimτ log(1− e(mτ))

)
(4.82)

The noting that

− Li2(1− e(mτ)) =
∞∑
`=1

(−1)`+1B`−1

`!
(2πimτ)` (4.83)

we find that

1

2πiτ
Li2(e(mτ)) =

∞∑
`=1

B`−1

`!
m`(−2πiτ)`−1 − 2πi

24τ
−m log(1− e(mτ)) . (4.84)

Then finally we have

log(1− e(mτ)) = log(−2πimτ) +
∞∑
`=1

B`

` · `!m
`(−2πiτ)` (4.85)

and so

1

2πiτ
Li2(e(mτ)) =

∞∑
`=1

B`−1

`!
m`(−2πiτ)`−1− 2πi

24τ
−m log(−2πimτ)−

∞∑
`=1

B`

` · `!m
`+1(−2πiτ)` .

(4.86)
Therefore,

1

2πiτ
Li2(e(mτ)) +

1

2
log(1− e(mτ))

=
∞∑
`=1

B`−1

`!
m`(−2πiτ)`−1 − 2πi

24τ
+ (

1

2
−m) log(−2πimτ) + (

1

2
−m)

∞∑
`=1

B`

` · `!m
`(−2πiτ)` .

(4.87)
Therefore, we find that combining the resulting series that

(e(mτ); e(τ))∞
(e(m− d<(mτ)e/τ); e(τ))∞

∼ exp

(
−
∞∑
`=1

B`

`
(−2πiτ)`

`+1∑
k=0

Bk

k!(`+ 1− k)!
m`+1−k

− 2πi

24τ
+
(1

2
−m

)
log(−2πimτ)− 1

2
log
(Γ(m)Γ(m+ 1)

2πm2m

))
.

(4.88)

Taking the exponential of the last two terms and collecting the polynomials in m into the
Bernoulli polynomials given in equation 4.3 gives the result.
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This is verified numerically with the PARI/GP [20] Code 22.

Corollary 5. As τ → 0 for all N ∈ Z

(e(τ); e(τ))∞
(e(−1/τ); e(−1/τ))∞

= (−iτ)−
1
2e
(
− 1

24τ
− τ

24

)
(1 +O(τN)) . (4.89)

Proof. We simply substitute m = 1 into Lemma 5 and notice that for ` ∈ Z≥1

B`B`+1(1) = B`B`+1 = −δ`,1
12

. (4.90)

Again we can study the more general case and we find that for j ∈ {0, . . . , |c| − 1} that

(
e
(
m
aτ + b

cτ + d
− (j +m)

a

c

)
; e
(aτ + b

cτ + d

))
∞

=
c−1∏
`=0

(
e
(

(`− j)a
c
− (m+ `)

|c|
|c|

c2τ + cd

)
; e
(
− |c|
c2τ + cd

))
∞

∼ 2π

√
i|c|

c2τ + cd

(
2πi

m+ j

c2τ + cd

)−m+j
|c|

(
m+j
|c|

)m+j
|c|

Γ
(
m+j
|c|

)
× exp

( ∞∑
k=0

1

k!

( −2πi|c|
c2τ + cd

)k−1
` 6=j∑

0≤`≤|c|−1

Bk

(m+ `

|c|
)

Li2−k

(
e
(

(`− j)a
c

))
+

2πi(c2τ + cd)

24|c| +
∞∑
k=2

1

k!

( −2πi|c|
c2τ + cd

)k−1

Bk

(m+ j

|c|
)
ζ(2− k)

)
= 2π

√
−iτ̃γ

(
− 2πi

m+ j

|c| τ̃γ

)−m+j
|c|
(m+ j

|c|
)m+j
|c|

Γ
(m+ j

|c|
)−1

× exp

( ∞∑
k=0

(2πiτ̃γ)
k−1

k!

`6=j∑
0≤`≤|c|−1

Bk

(m+ `

|c|
)

Li2−k

(
e
(

(`− j)a
c

))
− 2πi

24τ̃γ
+
∞∑
k=2

(2πiτ̃γ)
k−1

k!
Bk

(m+ j

|c|
)
ζ(2− k)

)

(4.91)
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Again using the cyclic dilogarithm from definition 12, we find that(
e
(
m
aτ + b

cτ + d
− (j +m)

a

c

)
; e
(aτ + b

cτ + d

))
∞

∼ 2π
√
−iτ̃γ

(
− 2πi

m+ j

|c| τ̃γ

)−m+j
|c|
(m+ j

|c|
)m+j
|c|

Γ
(m+ j

|c|
)−1

× e
(
− 1

24|c|τ̃γ

) `6=j∏
0≤`≤|c|−1

(
1− e

(
(`− j)a

c

)) 1
2
−m+`
|c| (

1 +O(τ̃γ)
) (4.92)

This is verified in the Code 23. Specialising m = 1, j = |c| − 1 we find(
e
(aτ + b

cτ + d

)
; e
(aτ + b

cτ + d

))
∞

∼
√
cτ + d e

(( −1

c2τ + cd

)−1

24
− 1

24|c|
c2τ + cd

−|c|
)√−ic
|c|

|c|−1∏
`=1

(
1− e

(
`
a

c

)) 1
2
− `
|c|
.

(4.93)

To prove this we use various properties of the dilogarithm and the Bernoulli polynomials. For
the vanishing of the higher order terms we use equation (4.30) and the symmetry Bk(x) =
(−1)kBk(1− x).

4.6 General behaviour of q–hypergeometric asymptotics
Using the asymptotics of the Pochhammer symbol will allow us to determine the asymptotics
of q–hypergeometric sums. The general behaviour of such sums is understood in many
examples and there are many common structures observed at least numerically. We describe
some of this behaviour then go through some examples coming from Nahm sums. Then
we will consider some examples coming from knots, and, finally, consider a closed three–
manifold.

There are multiple ways that q can tend to a root of unity. For q–hypergeometric functions
defined at roots of unity such as the quantum invariants of sections 2.3 and 2.4 we can
simply approach through roots of unity of increasing order. For q–series we can approach
through the upper half plane in a variety of ways. Often this is done radially, which turns out
to be the worst possible choice from the perspective of resurgence discussed in chapter 11.
This is because this ray is an accumulation point of Stokes rays coming from a peacock
pattern [69, 68]. Instead, taking the limit on some generic angle provides a better behaviour
as noticed in [85]. Finally, one can also take the limit with |q̃| fixed. This will be discussed
in detail in section and the asymptotics is more subtle and are discussed in Section 8.2. This
will be related to a weak form of quantum modularity. It was noticed in [208] that one
should approach roots of unity on whatever angle using modular transformations. It is then
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most natural to consider asymptotics for γ = [a, b; c, d] ∈ SL2(Z) as τ → i∞ of the function
evaluated at

q̃γ = e
(aτ + b

cτ + d

)
= e

(a
c
− 1

c2τ + cd

)
= e

(a
c

)
e
( τ̃γ
|c|
)
. (4.94)

Then the asymptotics of q–hypergeometric functions around an isolated critical point ρ takes
the form

Φ̂ρ
a/c

( 1

c2τ + cd

)
= µρ(a/c)(cτ + d)dρ exp

(VCρ(cτ + d)

2πic

)ερ(a/c)1/k√
δρ

(
Aρ,0,a/c + Aρ,1,a/c

2πi

c2τ + cd
+ · · ·

)
(4.95)

where µρ(a/c)8c = 1, dρ ∈ 1
2
Z, VCρ is a combination of values of the dilogarithm function

and logarithms at points of the field K, ερ(a/c) ∈ O×K[e(a/c)] is a unit, δρ ∈ K and Aρ,n,a/c ∈
K[e(a/c)]. Importantly, the series only depends on a/c and not Φ̂ρ

a/c and just the argument
will depend on d. The unit ε we studied in detail in [34].

We can also understand the denominators of the numbers Aρ,n,a/c. To do this we will need
a simple sequence of numbers used in [86]. Indeed, it is shown [86, Thm. 9.1] that for knots
and all but finitely many primes the perterbative invariants defined in [45, 46] have universal
denominators. These numbers are the denominators that appear in a half shifted Stirlings
approxmation. See [177, A144618]. Take

Dn = 22n+
∑∞
`=0bn/2`c

∏
p>2, prime

p
∑∞
`=0bn/p`(p−2)c (4.96)

This can be computed using Code 1. The first few values of this sequence are given by

D0 = 1 , D1 = 24 , D2 = 1152 , D3 = 414720 , D4 = 39813120 , . . . (4.97)

With the universal denominator Dn we can in general say more and it has been observed [86]
that numerically when the critical points are defined over the ring of integers

Aρ,n,a/cDnδ
3n ∈ OK[e(a/c)][c

−1] . (4.98)

Numerically this is extremely helpful as trying to recognise algebraic integers convincingly
in a known number field can be done via the LLL algorithm [119]. The µ is related to the
multiplier system of the Dedekind η-function 7.2.

We can view the constant terms of these series as a function fromQ to C with addition proper-
ties on the image related to the denominator. Garoufalidis and Zagier [86] realised that these
functions have asymptotics that behave in a similar way to the original q–hypergeometric
functions. Their addition to the functions we consider will be absolutely fundamental for
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the later sections of the thesis on quantum modularity discussed for example in chapter 8.
To get the modularity we need to use the “tweaking factor” given by

λ[a,b;c,d](r/s) =
c

s(cr + ds)
(4.99)

which gives an additive PSL2(Z) cocycle [86, Lem. 3.1]. We will see that this is in fact a
coboundary associated to the Dedekhind η–function in Section 7.2.

There are also expectations for the behaviour of the asymptotics of the coefficients of these
series. In particular, from the conjectures of [67], it is expected [86, 87] that for aρ,n =
Aρ,n/

√
δρ

aρ,n ∼
∑
ρ′

M(ρ, ρ′)

2πi

∑
`≥0

Γ(k − `)
(VCρ′ − VCρ)k−`

aρ′,` (4.100)

Finally, the behaviour of the coefficients is conjectured to satisfy extremely strong properties.
In particular, these series are expected to be resurgent [67, 69, 68]. The Borel transform of
Φ̂γ
ρ1

is expected to have analytic continuation on a star domain coming from a peacock
pattern with branch cuts with branch points at

VCρ2 − VCρ1 + 4π2Z , (4.101)

where ρ2 ranges over the other critical points. This Borel transform is then expected, away
from the singularities, to allow for Laplace transforms. Moreover, the jumping across the
singularities of the Borel transform at VCρ2−VCρ1 +4π2k is expected to be an integer times
q̃kΦ̂γ

ρ2
, which gives a finite number of asymptotic series that arise for a given hypergeometric

function. Moreover, through the work in [69, 68] we expect to be able to compute these inte-
gers determining the jumping at every branch point. This leads to a compelling conjectural
picture with strong computational power. This will be demonstrated in chapter 11.

Remark 14. For non-isolated critical points defining some variety, in recent work with
Garoufalidis [83] it was observed that periods can arise in the asymptotics of these q–
hypergeometric functions. Therefore, somewhat speculatively, it seems like a natural gen-
eralisation of this picture would be to take periods on the various varieties given by critical
points and c–fold cyclic covers when approaching other roots of unity.

4.7 The case of rank one Nahm sums

Nahm sums are special q–hypergeometric functions. They satisfy q–difference equations,
which we will see in part III. Their asymptotics were studied in detail in [88]. We won’t
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consider their full generality here but just their one dimensional versions. Take the following
sum

fA,m,n(q) =
∞∑
k=0

e(nk)
q
A
2
k2+km

(q; q)k
. (4.102)

This can be computed efficiently with Code 30 for A ∈ 2Z.

We can apply some the methods of Section 3.2 to find the leading order asymptotics as q → 1
experimentally. For A ∈ 2Z we can use Code 31. To compute this leading order behaviour
we can use the results of [88, 143, 142, 206]. We will assume that A ∈ Z however A ∈ Q can
be handled by similar methods4.

By the Poisson summation formula of Theorem 26, for A > 1, we have

fA,m,n(q) =
1

(q; q)∞

∑
k∈Z

e(nk)q
A
2
k2+km(qk+1; q)∞

=
1

(q; q)∞

∑
`∈Z

∫
R
e
(A

2
x2τ + xmτ + (n+ `)x

)(
e((x+ 1)τ); e(τ)

)
∞dx

=
1

τ(q; q)∞

∑
`∈Z

∫
τR

e
(A

2

x2

τ
+ xm+ (n+ `)

x

τ

)(
e(x+ τ); e(τ)

)
∞dz .

(4.103)

The integrals can each be approximated by the saddle point method i.e. Laplace’s method.
In general, one of the integrals will dominate the others and we will find the assymptotics
of fA,m,n(q) is determined to leading order by the asymptotics of this integral. The leading
order of the integrand is given by

e
(A

2

x2

τ
+ xm+ (n+ `)

x

τ

)(
e(x+ τ); e(τ)

)
∞

= e
( 1

(2πi)2τ
Li2(e(x))− 1

(2πi)2τ

π2

6
+
A

2

x2

τ
+ (n+ `)

x

τ
+ o(τ−1)

)
,

(4.104)

and therefore, the critical points are given by solutions to

0 =
∂

∂x

( 1

(2πi)2
Li2(e(x))− 1

(2πi)2

π2

6
+
A

2
x2 + (n+ `)x

)
= − 1

2πi
log(1− e(x)) + Az + n+ ` .

(4.105)

The exponential of the solutions X = e(x) satisfies the algebraic equation

1−X = e(n)XA (4.106)
4For A < 1 one will need the relations given in Section 6.3.
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which generically has finitely many solutions. This equation appeared in a more general
form in equation (1.89) in relation to the Bloch group, which we will return to in Section 7.4.
Therefore there will in general be a finite number of saddle points of each integral.

Example 38 (A = 2, n = 0, q = 1). This example is computed with Code 32. We have the
Nahm equation

1−X = X2 (4.107)

which has solutions

X1 = −1

2
−
√

5

2
and X2 = −1

2
+

√
5

2
. (4.108)

Therefore, for k ∈ Z
x1,k = 0.50000 · · · − 0.076587 · · · i+ k ,

x2,k = 0.076587 · · · i+ k .
(4.109)

Then
− 1

2πi
log(1− e(x1,k)) + 2x1,k + ` = 2k + `+ 1 ,

− 1

2πi
log(1− e(x2,k)) + 2x2,k + ` = 2k + ` .

(4.110)

Therefore, the critical values are given by

VC1,k = Li2(e(x1,k))−
π2

6
+ (2πi)2x2

1,k − (2πi)2(2k + 1)x1,k

= 7.2377 · · ·+ 4π2k(k + 1) =
11

15
π2 + 4π2k(k + 1) ,

VC2,k = Li2(e(x2,k))−
π2

6
+ (2πi)2x2

2,k − (2πi)2(2k + 1)x2,k

= −0.65797 · · ·+ 4π2k2 = − 1

15
π2 + 4π2k2 .

(4.111)

Therefore, we see that the largest contribution to the asymptotics is given by the critical point
x2,0 for any argument of τ . We then want the asymptotics of the integral

1

τ(q; q)∞

∫
τR

e
(z2

τ
+ zm+ `

z

τ

)(
e(z + τ); e(τ)

)
∞dz . (4.112)

When ` = 0 the contour plot of

=
( 1

(2πi)2
Li2(e(x))− 1

(2πi)2

π2

6
+ x2

)
(4.113)

is given in Figure 4.4. This figure shows that we can deform the contour to the critical point.
Notice that the asymptotics of the integrand at the critical point is given by
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Figure 4.4: Contour plot of the imaginary part of the leading order of the logarithm of the of
the integrand of the integral associated to the Nahm sum with A = 2 and ` = 0,−1,−2,−3
respectfully. This for ` = 0 has a critical point at x2,0 = 0.076587 · · · i. This figure was made
with Mathematica [101].
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(−iτ)
1
2e
(
x2,0m+

τ

24
+

1

2πi

∞∑
k=1

Bk(1)(2πiτ)k−1

k!
Li2−k(e(x2,0))

)
. (4.114)

Therefore, we see that the method of steepest descent gives rise to the asymptotics when
τ → 0 on any angle

f2,m,0(e(τ)) ∼ e
(VC2,0

(2πi)2

−1

τ

) Xm
2√

X2 + 2(1−X2)
(1 + · · · ) . (4.115)

The higher terms can similarly be computed using Laplace’s method of Theorem 28. Given
this is one dimensional this can be done to high order. We can also perform this computation
numerically and we find that for all N ∈ Z

f2,0,0(e(τ)) ∼ e
(VC2,0

(2πi)2

−1

τ

) 1√
X2 + 2(1−X2)

e
( τ

60

)
(1 +O(τN)) . (4.116)

Given that the asymptotics actually give rise to a convergent function we can subtract and
study exponentially small corrections. This is a manifestation of modularity and we will study
this example from that perspective in Section 7.4. However, the coefficients of these conver-
gent asymptotic series are given exactly and their asymptotic behaviour is then completely
determined.

Example 39 (A = 4, n = 0, q = 1). This example is computed with Code 33. This example
has been studied in detail by Matthias Storzer in relation to work on his thesis. We have the
Nahm equation

1−X = X4 (4.117)

which has solutions
X1 = −1.2207 · · · ,
X2 = 0.72449 · · · ,
X3 = 0.24813 · · · − 1.0340 · · · i ,
X4 = 0.24813 · · ·+ 1.0340 · · · i .

(4.118)

Therefore, for k ∈ Z

x1,k = 0.50000 · · · − 0.031745 · · · i+ k ,

x2,k = 0.051293 · · · i+ k ,

x3,k = −0.21252 · · · − 0.0097740 · · · i+ k ,

x4,k = 0.21252 · · · − 0.0097740 · · · i+ k .

(4.119)
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Then

− 1

2πi
log(1− e(x1,k)) + 4x1,k + ` = 4k + `+ 2 ,

− 1

2πi
log(1− e(x2,k)) + 4x2,k + ` = 4k + ` ,

− 1

2πi
log(1− e(x3,k)) + 4x3,k + ` = 4k + `− 1 ,

− 1

2πi
log(1− e(x4,k)) + 4x4,k + ` = 4k + `+ 1 .

(4.120)

Therefore, the critical values are given by

VC1,k = Li2(e(x1,k))−
π2

6
+ 2(2πi)2x2

1,k − (2πi)2(4k + 2)x1,k

= 8π2k(k + 1) + 17.203 · · · ,

VC2,k = Li2(e(x2,k))−
π2

6
+ 2(2πi)2x2

2,k − (2πi)2(4k)x2,k

= 8π2k2 − 0.50498 · · · ,

VC3,k = Li2(e(x3,k))−
π2

6
+ 2(2πi)2x2

3,k − (2πi)2(4k − 1)x3,k

= 4π2k(2k − 1) + 3.1656 · · · − 0.98137 · · · i ,

VC4,k = Li2(e(x4,k))−
π2

6
+ 2(2πi)2x2

4,k − (2πi)2(4k + 1)x4,k

= 4π2k(2k + 1) + 3.1656 · · ·+ 0.98137 · · · i .

(4.121)

Therefore, we see that the largest possible contribution to the asymptotics is given by the
critical points x2,0, x3,0, x4,0 depending on the argument of τ . We then want the asymptotics
of the integral

1

τ(q; q)∞

∫
τR

e
(

2
z2

τ
+ zm+ `

z

τ

)(
e(z + τ); e(τ)

)
∞dz . (4.122)

When ` = −1 the contour plot of

=
( 1

(2πi)2
Li2(e(x))− 1

(2πi)2

π2

6
+ 2x2 − x

)
(4.123)

is given in Figure 4.5. This figure shows that we can deform the contour to the critical point.
Notice that the asymptotics of the integrand at the critical point is given by

(−iτ)
1
2e
(
x4,0m+

τ

24
+

1

2πi

∞∑
k=1

Bk(1)(2πiτ)k−1

k!
Li2−k(e(x4,0))

)
. (4.124)



4.7. THE CASE OF RANK ONE NAHM SUMS 197

-2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

-2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

-2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

-2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

Figure 4.5: Contour plot of the imaginary part of the leading order of the logarithm of the of
the integrand of the integral associated to the Nahm sum with A = 4 and ` = −1, 0,−2,−3
respectfully where τ ∈ R. For ` = −1, this has a critical point at x4,0 = 0.21252 · · · −
0.0097740 · · · i. This figure was made with Mathematica [101].
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π0.26125 = arg(VC4,0 − VC2,0) arg(VC2,0 − VC3,0) = 2.8803

∣∣∣e(− VC1,0

(2πi)2τ
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)∣∣∣

arg(τ)

Figure 4.6: Exponential growth around each critical point with largest critical points for
A = 4 Nahm sum.

Therefore, we see that the method of steepest descent gives rise to the asymptotics when
τ → 0 is on a small angle just above the positive reals

f4,m,0(e(τ)) ∼ e
(VC4,0

(2πi)2

−1

τ

) Xm
4√

X4 + 4(1−X4)
(1 + · · · ) . (4.125)

The higher terms can similarly be computed using Laplace’s method of Theorem 28. However,
when τ → 0 nearly radially we find

f4,m,0(e(τ)) ∼ e
(VC2,0

(2πi)2

−1

τ

) Xm
2√

X2 + 4(1−X2)
(1 + · · · ) . (4.126)

The particular solution that dominates the asymptotics depends on the argument of τ . Indeed,
whichever is larger between

e
(VC1,0

(2πi)2

−1

τ

)
, e

(VC2,0

(2πi)2

−1

τ

)
, e

(VC3,0

(2πi)2

−1

τ

)
, and e

(VC4,0

(2πi)2

−1

τ

)
. (4.127)

We plot the absolute values as a function of arg(τ) when |τ | = 1 in Figure 4.6. Besides
a global constant, the asymptotics give rise to series that are defined over the number field
associated to X4 + X − 1 = 0. By applying the methods of Section 3.2 and the LLL
algorithm [119], we can numerically compute exact values for around one hundred of these
coefficients with little effort. Letting

δ = 4− 3X , (4.128)

the coefficients are all Galois conjugate and the first couple for m = 0 are given

A0 = 1 ,

A1 =
−64 + 100X + 18X2 − 54X3

24 δ3
,

A2 =
−104876 + 113812X + 29836X2 + 17388X3

1152 δ6
,

A3 =
−79093616− 1648464240X + 2928617760X2 − 694542712X3

414720 δ9
.

(4.129)
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<(z)
=(z)

VC2,0 − VC4,0 VC1,0 − VC4,0

Figure 4.7: Plots of poles and zeros of the [50/50]–Padé approximate of Φ(ρ4).

Then, we can consider the asymptotics of the coefficents ak = Ak/
√
δ and we find numerically

that as k →∞

a
(ρ1)
k ∼ 1

2πi

∑
`≥0

Γ(k − `)
(VC3,0 − VC1,0)k−`

a
(ρ3)
` − 1

2πi

∑
`≥0

Γ(k − `)
(VC4,0 − VC1,0)k−`

a
(ρ4)
`

a
(ρ2)
k ∼ − 1

2πi

∑
`≥0

Γ(k − `)
(VC3,0 − VC2,0)k−`

a
(ρ3)
` +

1

2πi

∑
`≥0

Γ(k − `)
(VC4,0 − VC2,0)k−`

a
(ρ4)
`

a
(ρ3)
k ∼ 1

2πi

∑
`≥0

Γ(k − `)
(VC2,0 − VC3,0)k−`

a
(ρ2)
`

a
(ρ4)
k ∼ − 1

2πi

∑
`≥0

Γ(k − `)
(VC2,0 − VC4,0)k−`

a
(ρ2)
` .

(4.130)

This indicates that these series have factorial growth and therefore taking the Borel transform
of Section 3.7 get what seem numerically to be convergent series with radius of convergence
at various values |VCa,0−VCb,0|. In fact, we expect branch points at all |VCa,k−VCb,j|. We
can explore this numerically in a variety of ways. Firstly, we can take the Borel transform
and then apply a Padé approximation from Section 3.6. As was illustrated with the logarithm
in Figure 3.5, branch cuts appear as zeros and poles of the Padé approximates. For the series
with embedding ρ4, we get Figure 4.7. On the other hand we can use Remark 13 and take
the Borel transform and then apply some conformal maps, which switch the nearest critical
points. For example, the Borel transform of the series associated to ρ4 has nearest critical
point VC2,0 − VC4,0. Therefore, we can take

ψ =
ξ

VC2,0 − VC4,0 − ξ
, or ξ = (VC2,0 − VC4,0)

ψ

ψ + 1
. (4.131)

Expanding in ψ we see that the critical point at ξ = VC2,0 − VC4,0 is now pushed to ∞.
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Indeed, we can compute and find

∞∑
k=1

a
(ρ4)
k

Γ(k)
ξk =

∞∑
k=1

a
(ρ4)
k

Γ(k)

(
(VC2,0 − VC4,0)

ψ

ψ + 1

)k
= (0.016346 · · ·+ 0.13260 · · · i)ψ + · · ·

+ (−1.5668 · · · − 3.3495 · · · i)× 1010 × ψ125 +O(ψ126) .

(4.132)

On the other hand

∞∑
k=1

1

2πi

k−1∑
`=0

Γ(k − `)
Γ(k)(VC1,0 − VC4,0)k−`

a
(ρ1)
`

(
(VC2,0 − VC4,0)

ψ

ψ + 1

)k
= (−0.0050461 · · ·+ 0.014682 · · · i)ψ + · · ·

+ (−1.5668 · · · − 3.3495 · · · i)× 1010 × ψ125 +O(ψ126)

(4.133)

Therefore, we see that there is a critical point at VC1,0 − VC4,0 and the numerics indicate
the behaviour around the branch point. The other singularities can be similarly analysed. We
can do this for the singularities closest to zero and find a the matrix

(M(ρ, φ))ρ,φ =


0 ? 1 −1
? 0 −1 1
−1 1 0 0
1 −1 0 0

 . (4.134)

To compute the question marks we need to compute more coefficients of the asymptotic series
and perform a more detailed analysis. However, with the conjectural behaviour of the Stokes
phenomenon these can be compute as seen in chapter 11.

These examples and the analysis was associated to the element

(
0 −1
1 0

)
∈ SL2(Z) . (4.135)

We can extend this to the case when we take

γ =

(
a b
c d

)
∈ SL2(Z) , (4.136)
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Indeed, again using the Poisson summation formula, assuming A ∈ 2Z>0 we have

fA,m,n(q̃γ) =
1

(q̃γ ; q̃γ)∞

∑
k∈Z

e(nk)q̃
A
2
k2+km

γ (q̃
k+1
γ ; q̃γ)∞

=
1

(q̃γ ; q̃γ)∞

|c|−1∑
r=0

∑
k∈Z

e(n(k|c| + r))q̃
A
2

(k|c|+r)2+(k|c|+r)m
γ (q̃

k|c|+r+1
γ ; q̃γ)∞

=
1

(q̃γ ; q̃γ)∞

|c|−1∑
r=0

e(nr)q̃
A
2
r2+rm

γ

∑
k∈Z

e(nk|c|)q̃
A
2
k2c2+Ak|c|r+k|c|m

γ (q̃
k|c|+r+1
γ ; q̃γ)∞

=
1

(q̃γ ; q̃γ)∞

|c|−1∑
r=0

e(nr)q̃
A
2
r2+rm

γ

∑
k∈Z

e(nk|c|)e
(A

2
k
2|c|τ̃γ + Akrτ̃γ + kma + kmτ̃γ

)
(q̃
r+1
γ e(kτ̃γ); q̃γ)∞

=
1

(q̃γ ; q̃γ)∞

|c|−1∑
r=0

e(nr)q̃
A
2
r2+rm

γ

∑
`∈Z

∫
R
e
(A

2
x
2|c|τ̃γ + (n|c| +ma + `)x + Arτ̃γx +mτ̃γx

)
(q̃
r+1
γ e(xτ̃γ); q̃γ)∞dx

=
1

(q̃γ ; q̃γ)∞

|c|−1∑
r=0

e(nr)q̃
A
2
r2+rm

γ

∑
`∈Z

1

τ̃γ

∫
τ̃γR

e
( A

2τ̃γ
x
2|c| + (n|c| +ma + `)

x

τ̃γ
+ Arx +mx

)
(q̃
r+1
γ e(x); q̃γ)∞dx

(4.137)

Using the distributive property of the dilogarithm from equation (4.37), the critical points
correspond to solutions of

0 =
∂

∂x

1

|c|Li2(e(|c|x)) +
A

2
x2|c|+

(
n|c|+m|c|a

c
+ `
)
x

= − 1

2πi
log(1− e(|c|x)) + Ax|c|+ n|c|+m|c|a

c
+ ` .

(4.138)

Again taking the exponential X = e(x) we find that

1−X |c| = e(n|c|+m|c|a
c

)XA|c| . (4.139)

Many of the structures we explored for γ = [0,−1; 1, 0] will also hold here and turn out to
be the same. However, an important outcome of considering these series is that to each root
of unity we can obtain such a series. The full series is of interest but most important for this
thesis will the constant terms. We will compute these constant for the previous examples.

Example 40 (A = 2,m ∈ Z, n = 0, q = e(1/c)). This example is computed in Code 32.
Consider

γ =

(
1 0
c 1

)
∈ SL2(Z) . (4.140)

Then we want the asymptotics of the integrals∫
τ̃γR

e
( 1

τ̃γ
|c|x2 + (m+ `)

x

τ̃γ
+ 2rx+mx

)
(q̃r+1
γ e(x); q̃γ)∞dx . (4.141)

Applying the saddle point method and using

(q̃r+1
γ e(x); q̃γ)∞ ∼ exp

(
Li2
(
x|c|
)

2πi|c|τ̃γ

) c−1∏
s=0

(
1−e

(
(r+1+s)

1

c
+x
)) 1

2
− r+1+s

|c|
(1+O(τ̃γ)) , (4.142)
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we find as τ →∞ and for X1/|c|
2 = e(x2,0/|c|) we have

f2,m,0

(
q̃γ
)
∼ e

( VC2,0

(2πi)2|c|τ̃γ

) ∏|c|−1
`=1

(
1− e

(
`1
c

)) `
|c|−

1
2√

|c|X2/(1−X2) + 2|c|

×
|c|−1∑
r=0

qr
2+rmX

(2r+m)/|c|
2∏|c|−1

s=0 (1− qr+s+1X
1/|c|
2 )

r+s+1
|c| −

1
2

(1 +O(τ̃γ)) .

(4.143)

Then numerically we can explore and find that for all N ∈ Z

f2,m,0

(
q̃γ
)
∼ Φ̂

(ρ2)
1/c,m

(
τ̃γ +O(τ̃N+1

γ )
)

= e
( VC2,0

(2πi)2|c|τ̃γ

) ∏|c|−1
`=1

(
1− e

(
`1
c

)) `
|c|−

1
2√

|c|X2/(1−X2) + 2|c|

×
|c|−1∑
r=0

qr
2+rmX

(2r+m)/|c|
2∏|c|−1

s=0 (1− qr+s+1X
1/|c|
2 )

r+s+1
|c| −

1
2

e
( τ̃γ

60|c|
)

(1 +O(τ̃Nγ ))

(4.144)

These constants vanish for certain m when c + 5Z = 5Z and we find exponentially small
corrections again which we will return to in chapter 8. However, we can study the asymptotics
the coefficients of these series as c→∞. We have for q = e(a/c)

Φ
(ρj)

a/c,m(0) =

∏|c|−1
`=1

(
1− q`

) `
|c|−

1
2√

|c|Xj/(1−Xj) + 2|c|

|c|−1∑
r=0

qr
2+rmX

(2r+m)/|c|
j∏|c|−1

s=0 (1− qr+s+1X
1/|c|
j )

r+s+1
|c| −

1
2

. (4.145)

Therefore, using the cocycle [86, Lem. 3.1] denoted λγ which has

λ[0,−1;1,0](x) =
1

denom(x) numer(x)
, (4.146)

we have

Φ
(ρ2)
−1/x,0(0) = e

(−1

60
x
)

Φ
(ρ2)
x,0 (0)Φ

(ρ2)
1/1,0(0)e

( −1

60x

)
e
(−1

60

1

denom(x) numer(x)

)
+ e
(11

60
x
)

Φ
(ρ2)
x,1 (0)Φ

(ρ1)
1/1,0(0)e

( −1

60x

)
e
(−1

60

1

denom(x) numer(x)

)
.

(4.147)

Example 41 (A = 4,m ∈ Z, n = 0, c ∈ 1 + 2Z, q = e(2/c)). Consider

γ =

(
2 1
c (1 + c)/2

)
∈ SL2(Z) . (4.148)

Then we want the asymptotics of the integrals∫
τ̃γR

e
( 2

τ̃γ
|c|x2 + (2m+ `)

x

τ̃γ
+ 4rx+mx

)
(q̃r+1
γ e(x); q̃γ)∞dx . (4.149)
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Applying the saddle point method and using equation (4.142), we find as τ →∞ just above
the negative reals and for X1/|c|

4 = e(x4,0/|c|) we have

f4,m,0

(
q̃γ
)
∼ Φ̂

(ρ4)
2/c,m

(
τ̃γ +O(τ̃N+1

γ )
)

= e
( VC4,0

(2πi)2|c|τ̃γ

) ∏|c|−1
`=1

(
1− q`

) `
|c|−

1
2√

|c|X4/(1−X4) + 4|c|

×
|c|−1∑
r=0

q2r2+rmX
(4r+m)/|c|
4∏|c|−1

s=0 (1− qr+s+1X
1/|c|
4 )

r+s+1
|c| −

1
2

(1 +O(τ̃γ)) .

(4.150)

We can also numerically calculate the asymptotics of the constant terms and find

Φ
(ρ4)
1/x,0(0) ∼ e

( Vρ4

(2πi)2denom(x)numer(x)

)
Φ

(ρ4)
−x,1(0)Φ̂

(ρ4)
1/1,0

(2πi

x

)
. (4.151)

4.8 The case of simple knots
Example 42 (Trefoil 31 [204]). In Example 13, the coloured Jones polynomial of the trefoil 31

was given and we can therefore write down the Kashaev invariant

J̃0(31; q) =
∞∑
k=0

qk(q; q)2
k = q−1

∞∑
k=0

(q−1; q−1)k =
∞∑
k=0

(−1)kq−k(k+3)/2(q; q)k . (4.152)

This is an element of the Habiro ring of Section 5.8 so can be evaluated at roots of unity and
formally with q = exp(~) as

J̃0(31; exp(~)) = Φ(ρ0)(31;−~) = 1 + ~2 + 2~3 +
73

12
~4 +

43

2
~5 +

31861

360
~6 + · · · . (4.153)

Now applying the methods of Section 3.3 we can calculate numerically that for n ∈ Z as
n→∞

J̃0(31; e(−1/n)) ∼ e(1/8) n3/2e
(23

24
n
)
e
( 23

24n

)
+ Φ(ρ0)

(
31;
−2πi

n

)
. (4.154)

One can compute the leading order behaviour as was given [204]

a
(ρ0)
k ∼

√
2π

∞∑
`=0

Γ(k − `+ 3/2)

`!(π2/6)

(
− 1

24

)`
. (4.155)

In the same paper, Zagier gave q–series that whose radial limits matched those of the series
above. In particular, the strange identity of the title refers to the fact that for5

f(q) = −1

2

∞∑
n=0

n
(12

n

)
q(n2−1)/24 , (4.156)

5See, for example, [176, Def. 3.2] for the definition of the Legendre symbol.
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as q → 1 radially we have

f
(
e(−1/τ)

)
∼ Φ(ρ0)(31; 2πi/n) . (4.157)

Example 43 (Figure eight knot). This example is computed in Code 35. In Example 13, the
coloured Jones polynomial of the figure eight knot 41 was given and we can therefore write
down the Kashaev invariant as we did in equation (2.62)

J̃0(41; q) =
∞∑
k=0

q−k(k+1)/2(q; q)2
k . (4.158)

Recently, [85] studied the asymptotics of q–series related to 41. Similarly, great detail was
given in [86] on the asymptotics of functions at roots of unity. We will summarise some of
these results and include the computations that lead to the series introduced in [70]. Firstly,
we have

VC(ρ1) = = 2.0299 · · · i (4.159)

The asymptotic series computed to first order in [5] and to many orders in [208], and sub-
sequentially by others for the Kashaev invariant is given by

J̃0(41; e(−1/n)) = Φ̂(ρ1)(2πi/n)

= e
(VC(ρ1)

(2πi)2
n
) e(1/8)√√

−3

(
1− 11

24
√
−3

3

2πi

n
+

697

1152
√
−3

6

(2πi

n

)2

+ · · ·
)
.

(4.160)

The various properties of the asymptotic series are considered in [86]. For example, the
analogue of the matrix of equation 4.134 is given in [86, Eq. 39] as

(M(ρ, φ))ρ,φ =

0 1 −1
0 0 −3
0 3 0

 . (4.161)

They also compute the constants of the asymptotic series and give their asymptotic in Sec-
tion [86, Sec. 3.1]. However, we plot the poles and zeros of a Padé approximate in Figure 4.8.
Around 2010 somewhat by chance and a little help from grep, Garoufalidis and Zagier made
a remarkable discovery [85]. They found that this series occurred in the asymptotics of a
q–series not at the time known to be related to the figure eight knot. Taking

g(q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

= 1− q− 2q2− 2q3− 2q4 + q6 + 5q7 + 7q8 + 11q9 + · · · , (4.162)

they found that as τ vertically approaches 0

g(e(−1/τ)) ∼ 1√
τ

(
Φ̂(ρ1)(2πi/τ) + Φ̂(ρ2)(2πi/τ)

)
, (4.163)
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<(z)

=(z)

2VC

4π2−4π2

2VC + 4π22VC− 4π2

Figure 4.8: Plots of poles and zeros of the [145/145]–Padé approximate of Φ(ρ2).

where we note that Φ̂(ρ2)(~) = −iΦ̂(ρ1)(−~). This can be thought of as some kind of analogue
of a strange identity for the figure eight knot. Then Garoufalidis and Kashaev factorised the
state integrals of [8] in [73]. This led to the series g(q) and an additional series

G(q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

(
− 4G1(q) + 2

k∑
`=1

1 + qj

1− qj
)

= 1− 7q − 14q2 − 8q3 − 2q4 + 30q5 + 43q6 + 95q7 + 109q8 + 137q9 + · · · .
(4.164)

where

G1(q) = −1

4
+ q + 2q2 + 2q3 + 3q4 + 2q5 + 4q6 + 2q7 + 4q8 + 3q9 + · · · , (4.165)

is the first Eisenstein series discussed and efficiently computed in 7.1. Garoufalidis and
Zagier [85] then observed that

G(e(−1/τ)) ∼ √τ
(
Φ̂(ρ1)(2πi/τ)− Φ̂(ρ2)(2πi/τ)

)
. (4.166)

They then consider various other properties of the asymptotics as we did for the A = 4 Nahm
sum of Example 39. While the series g(q), G(q) have asymptotics that see Φ̂(ρ1), Φ̂(ρ2), they do
not have any asymptotics that see trivial connection i.e. the series Φ̂(ρ2) of equation (2.69).
The important point, which was much of the initial motivation for the next part III, is that g
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and G are both special values of a rank two q–holonomic system. Their asymptotics therefore
also come as part of a q–holonomic system where q = e~. However, the Kashaev invariant is
part of an inhomogeneous rank two system and therefore is in an extension. Therefore, one
must find a q–series that solves an associated inhomogenous rank two q–difference equation.
The series that does this appears implicitly in [85] however was not noticed until this work.
In particular, take

G(q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

(
1

8

(
− 4G1(q) + 2

k∑
`=1

1 + qj

1− qj
)2

− 1

24
+

k∑
`=1

q`

(1− q`)2

)
. (4.167)

Then one can observe that

G(q)(e(−1/τ)) ∼ Φ̂(ρ0)(−2πi/τ) +
τ 3/2

12
Φ̂(ρ1)(2πi/τ) +

τ 3/2

12
Φ̂(ρ2)(2πi/τ) . (4.168)

4.9 Half surgery on the figure eight
Example 44 (41(−1, 2)). This example is computed in Code 36. We will explore the asymp-
totics of the WRT invariant of this manifold. This was given in Example 16 so that for
q ∈ lµ.. we have

(1− q)X(q) =
∑

0≤`≤k

(−1)kq−
1
2
k(k+1)+`(`+1) (q; q)2k+1

(q; q)`(q; q)k−`
. (4.169)

We have already seen aspects of the leading asymptotics of this function in Section 2.5. In
particular, the difficult case is when q = e(1/N) where N ∈ Z and there is polynomial
behaviour. Understanding this in our case will be best done in Section 8.3. Regardless, we
can use the methods of Section 3.2 to calculate the asymptotics numerically. Before this some
data associated to the manifold is given. The trace field is the number field of type [5, 1] with
discriminant −7215127 (a prime number), generated by a root of p(x), where

p(ξ) = ξ7 − ξ6 − 2ξ5 + 6ξ4 − 11ξ3 + 6ξ2 + 3ξ − 1 . (4.170)

Then let
δ = −12ξ6 + 15ξ5 + 31ξ4 − 74ξ3 + 133ξ2 − 66ξ − 74 . (4.171)

We index the solutions and therefore in particular the connections or critical points of a
stationary phase approximation and the values of δ the one-loop and the critical values or
the complexified volumes by

VC1 = 20.297 . . . , δ1 = −11.578 . . . , ξ1 = −2.2411 . . .

VC2 = −6.7857 . . . , δ2 = −12.636 . . . ξ2 = −0.43760 . . .

VC3 = −0.11620 . . . , δ3 = −83.275 . . . , ξ3 = 0.25599 . . .

VC4 = 9.2837 . . . , δ4 = −7.0205 . . . , ξ4 = 1.3348 . . .

VC5 = 2.1292 . . . , δ5 = −5.3937 . . . , ξ5 = 1.3483 . . .

VC6 = 4.8678 · · · − i1.3985 . . . , δ6 = 3.9517 · · · − i0.15252 . . . , ξ6 = 0.36981 · · · − i1.4410 . . .

VC7 = 4.8678 · · · + i1.3985 . . . , δ7 = 3.9517 · · · + i0.15252 . . . , ξ7 = 0.36981 · · · + i1.4410 . . . .

(4.172)
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Now we can apply the oscillatory asymptotic method of Section 3.3 to compute the asymp-
totics when q = e(−1/N). Applying the method at N = 500 which needs the values at
500 to say 1010 and with parameter e(0.1), e(0.3), e(0.4), e(0.7) we find exponential terms
respectfully

0.94313 · · ·+ 0.33243 · · · i , 0.093109 · · ·+ 0.99566 · · · i ,
−0.99606 · · · − 0.088638 · · · i , 0.47135 · · · − 0.88194 · · · i . (4.173)

These agree with the values

exp
(
− VC5

2πi

)
, exp

(
− VC4

2πi

)
, exp

(
− VC1

2πi

)
, exp

(
− VC2

2πi

)
, (4.174)

as predicted by Witten’s asymptotic expansion conjecture as these are the SU(2) Chern–
Simons values with the exception of the missing 1. With more data and precision this can also
be seen with the method. Similarly, we can compute the asymptotics when e(−1/(N + 1/2)).
This has leading asymptotics

(0.89275 · · ·+ 0.87392 · · · i)kk0.50000···(−0.41564 · · · − 1.0444 · · · i) . (4.175)

This can be recognised as

exp
(
−VC6

2πi
(k+1/2)

)√
k + 1/2

2e(1/8)√
δ6

(
1+A

(6)
1

−2πi

k + 1/2
+A

(6)
2

( −2πi

k + 1/2

)2

+ · · ·
)

(4.176)

The next few coefficients can be computed as

(
24δ3

6A
(6)
1

1152δ6
6A

(6)
2

)
=



1497746 3014838521575
1345119 2732414541176
−3675733 −7414786842283
2082815 4197826806919
−839488 −1690529009777
−283405 −574198051621
383432 771765277669



T

1
ξ7

ξ2
7

ξ3
7

ξ4
7

ξ5
7

ξ6
7


=

(
−158.75 · · ·+ i57.225 . . .
84862. · · · − i924.76 . . .

)

(4.177)
Before considering the asymptotics of the coefficients, we can also consider an associated
q–series. We will discuss its calculation in more detail in Section 6.9. This series was first
calculated in [92] however we use the following formula proved in Proposition 10,

Ẑ(q) =
∑

0≤k≤`

(−1)k+`q
1
2

3k(k+1)+ 1
2
`(`+1)−k (q; q)`

(q; q)2k(q; q)`−k
. (4.178)

The asymptotics of this functions will depend on the angle at which q approaches 1. If this
is done radially then we find that

Ẑ(q) ∼ exp
(
− VC3

2πi
τ
)√

τ
e(1/8)√

δ3

(
1 + A

(3)
1

−2πi

τ
+ A

(3)
2

(−2πi

τ

)2

+ · · ·
)

(4.179)
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Interestingly enough the SL2(R) connection has appeared. This means that we can compute
numerically all the Galois conjugates of the elements Ak. This is of great aid in numerical
computations as we can use this to guess these numbers, which now involves recognising inte-
gers once we have removed the denominators Dnδ

3n. With the values at k = 100000, 101000
using these three different sets of asymptotic we can recognise around one hundred and ten
coefficients. The last recognisable number with the data I have used is A114, and A114δ

342D114

is in the ring of integers and in this lattice the size of the integers that appear are 101041,
which means further computations one needs a large precision.

With these values we can compute the asymptotics of the coefficients and using optimal
truncation can find the first few sub–leading terms and find numerically that for ak = Ak/

√
δ

a
(j)
k ∼

∑
6̀=j

Mj,`

2πi

∑
`≥0

Γ(k − `)
(VCj − VC`)k−`

a
(`)
` (4.180)

where 

? ? ? 0 ? −1 1
? ? ? ? 0 −1 1
0 ? ? ? ? −1 1
? ? ? ? 0 −1 1
? ? ? ? ? −1 1
? ? ? 1 1 0 0
? ? ? −1 −1 0 0


(4.181)

Finally, for the trivial connection

(1− e~)X(e~) =
∞∑
k=0

a
(0)
k ~k = −~− 25

2
~2 − 1621

6
~3 − 195601

24
~4 + · · · , (4.182)

numerically we observe that

a
(0)
k ∼

7∑
`=1

M0,`

−i
√

2π

∑
`≥0

Γ(k − `+ 1/2)

(0− VC`)k−`+1/2
a

(`)
` . (4.183)

where (
? ? 1 ? 0 −1 1

)
(4.184)

The leading order of this expansion was noticed originally by Stavros Garoufalidis in a note
he gave me when I started work on this subject. These matrices can be explored in more
detail using conformal transformations however we will give a more detailed conjecture on
their structure in chapter 11.
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In another direction, we can of course consider the asymptotics as q tends to any roots of
unity and we find additional series there. Again we are interested in the constants of these
series. To calculate these we can use the techniques of Section 9. We use the solutions to

0 = (1−X2)(1−X−1
1 X2)−X1 ,

0 = (1−X2
1 )2 −X2

1X2(1−X−1
1 X2) .

(4.185)

These have solutions with respect to our generator of the trace field

X1,j = −3 + 11ξj + 20ξ2
j − 15ξ3

j + 6ξ4
j − 2ξ5

j − 4ξ6
j ,

X2,j = −9 + 19ξj + 76ξ2
j − 52ξ3

j + 20ξ4
j − 4ξ5

j − 13ξ6
j .

(4.186)

Then letting

∆ = −257 + 806ξ + 947ξ2 − 749ξ3 + 331ξ4 − 133ξ5 − 213ξ6 , (4.187)

the constants of the asymptotic series can be computed as follows

Φ
(ρi)
−1/x,0(0) =

−i
cε(q)

√
(1−X2

1 )2(1−X2)(1−X−1
1 X2)

∆

×
∑

k,`∈Z/cZ

qk
2+k`−mk+`X

2k+`−m
c

1 X
k+1
c

2

∏c−1
i=0(1− qi+1+`−kX

−1/c
1 X

1/c
2 )−(i+1+`−k)/c−1/2∏c−1

i=0(1− qi+1+`X
1/c
2 )(i+1+`)/c−1/2

∏c−1
i=0(1− qi+1+2kX

2/c
1 )(i+1+2k)/c−1/2

.

(4.188)

Then we can check the asymptotics of these coefficients to find

Φ
(ρi)
−1/x,m(0) ∼ e

(
− Vj

(2πi)2denom(x)numer(x)

)
Φ

(ρj)
x,0 (0)Φ̂

(ρ6)
1/1,m

(
− 2πi

x

)
. (4.189)
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q–difference equations
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Chapter 5

How to solve a q–difference equation

Linear differential equations have a long history motivated from trying to understand real
world physics. From the mathematical side the first examples we study are the equations
satisfied by the logarithm and exponential. Besides these basic functions, Gauss’s hypergeo-
metric function 2F1 and its second order differential equation is the next interesting example.
This function was then understood from a global perspective by Riemann who used analytic
continuation to define monodromy. Fuchs then continued this study to more complicated
equations with what we call regular singularities. Then Frobenius put this theory in a defi-
nite form giving an algorithm to construct solutions. This can then be extended to the case
of irregular singularities, where the associated Newton polygon has slopes. This leads to
exponential singularities. This leads to divergent solutions, the need for resummation and
Stokes phenomenon.

This theory of differential equations can be completely carried over into the world of q–
difference equations. The analogue of Gauss’s hypergeometric function was introduced by
Heine. Basically any property of Gauss’s function will have an analogue for Heine’s function.
For example, Barne’s contour integral can be replace by Watson’s. Frobenius’s theory can be
used to similarly construct solutions to q–difference equations. In fact, there are some aspects
that are better behaved in the world of q–difference equations. However, they already behave
in a more global way. Indeed, the variable of such equations naturally lives on C×. Often one
is interested in constructing solutions around 0 and ∞. Here irregular singularities lead to
θ–functions and similarly divergent solutions. These divergent solutions can be resummed to
construct meromorphic solutions to q–difference equations. Here the monodromy is stored
in a matrix that takes a basis around 0 to a basis around ∞ called the monodromy matrix
or Birkoff matrix.

There is also a striking difference to differential equations and that is in the description
of q. In constructing some kind of solutions we need to know what q is. For examples
we could have |q| 6= 1 which needs to some kind of q–series solutions. We could have q a
root of unity or we could have q = e~ where ~ is a formal variable. This leads to many
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different solutions depending on the form that q takes. It also depends on the variable of
the q–difference equation. If this variable is of the form qm then this can alter the form of
the algorithms that we wish to apply. The natural question that this then leads to is how
all of these solutions are related. This is most beautifully described by the state integrals of
part V, where functions not only satisfy a q–difference equation but an uncoupled q̃–difference
equation.

5.1 Linear q–difference equations
The theory of q–difference equations can be developed analogously to that of linear differ-
ential equations. Homogeneous linear q-difference equations can be described as modules of
the q–Weyl algebra denoted W . This is defined as the algebra generated by1 x, σx such that

σxx = qxσx (5.1)

where q is central and will often just be in C×. Notice that equation (5.1) is homogenous
in σx and x as opposed to the analogous equation (3.51) for the derivative. This algebra
does come with the extra structure of a natural involution ι : W → W defined so that for
f(x, q) ∈ Q(x, q)

ι(f(x, q)) = f(x, q−1) , and ι(f(x, q)σj) = f(x, q−1)σ−j . (5.2)

Extending this to an algebra homomorphism is well defined as

ι(σf(x, q)) = ι(f(qx, q)σ) = f(q−1x, q−1)σ−1 = σ−1f(x, q−1) = ι(σ)ι(f(x, q)) . (5.3)

This algebra acts on smooth functions in variables x, q and on formal power series in x with
coefficients functions in q via

(σxf)(x; q) = f(qx; q), σx
∑
k

ak(q)x
k =

∑
k

qkak(q)x
k,

(xf)(x; q) = xf(x; q), x
∑
k

ak(q)x
k =

∑
k

ak−1(q)xk.
(5.4)

To see this action is well defined notice that

(σxxf)(x; q) = (xf)(qx; q) = qxf(qx; q) = qx(σxf)(x; q) = (qxσxf)(x; q) . (5.5)

For a given problem, we are interested in certain modules. These will often be generated by
functions or power series satisfying equations of the form

N∑
i=0

αi(x)σixf = 0,
∑
k

N∑
i=0

Ni∑
j=0

αij(q)q
i(k−j)ak−j(q)x

k = 0, (5.6)

1To be more precise one can replace x by f ∈ Q(x, q) with the relation σf(x, q) = f(qx, q)σ.
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for some ai(x; q) =
∑Mi

j=0 aij(q)x
j. This generator is referred to as a cyclic vector. This can

naturally be extended to many variables.

There is a natural map from the q–Weyl algebra to two variable polynomial ring. In particu-
lar, if we formally set q = 1 then the relation between x and σx simply becomes commutation.
If we have a module defined by a cyclic vector then the minimal element of the q–Weyl al-
gebra that annihilates the cyclic vector will be set to a polynomial and the vanishing set of
that polynomial will be called the characteristic variety and an invariant of the module.

We will see that there are many examples where we would like to specialise x to specific
values. Often these will simply be x = qb. These special values will be related to special
points on the characteristic variety, which can be important for the links with K–theory 7.4.
For interesting q–difference equations, x will not be the elliptic variable of a Jacobi form.
However, at special points in x the object we get left with can have very strong modular
properties for Example 57.

We see that in this case the Weyl algebra acts on functions in b, q as follows

(σxf)b(q) = fb+1(q) , and (xf)b(q) = qbfb(q) . (5.7)

This can be related to the action on power series in x, as seen in equation (5.4). This is
related to the Fourier transform as discussed in [78, Sec. 5.1].

Remark 15. One can always take the solutions with continuous variable x and construct
their specialisation by taking combinations with elliptic functions so that the expansion around
x = qbeε at lowest order gives rise to solutions to the discrete equations.

Given a basis f (i) of solutions to the q–difference equation (5.6), one can construct the
Wronskian

W (f (1), · · · , f (N)) =

 f (1) · · · f (N)

: · · · :
σn−1
x f (1) · · · σn−1

x f (N)

 (5.8)

which satisfies first order equation

σxW (f (1), · · · , f (N)) = AW (f (1), · · · , f (N)) (5.9)

where

A(x; q) =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
: : : : · · · : 0
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1

− α0(x;q)
αn(x;q)

− α1(x;q)
αn(x;q)

− α2(x;q)
αn(x;q)

− α3(x;q)
αn(x;q)

· · · −αn−2(x;q)
αn(x;q)

−αn−1(x;q)
αn(x;q)


(5.10)
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is the so called companion matrix. Suppose we have two bases of solutions f (i), g(i) then
letting U = W (f (1), · · · , f (N)), V = W (g(1), · · · , g(N))

σx(V
−1U) = V −1A−1AU = V −1U. (5.11)

Therefore, we see that V −1U satisfies the following equation;

(σx − 1)f = 0. (5.12)

Solutions to equation (5.12) are functions f with f(qx; q) = f(x; q) i.e. elliptic in x with
respect to q. Therefore, given solutions to a q–difference equation we are free to take linear
combinations with coefficients elliptic functions in x to construct more solutions. These
elliptic functions are sometimes referred to as pseudo-constants. Notice that for x = qm we
see that the elliptic functions will reduce to functions constant in m. Even in this case, in
simply finding solutions, we have the freedom to multiply by functions in q.

Suppose we have a module of the q–Weyl algebra with basis f = (f1, · · · fN)T. Then there
is some A ∈ GLN(Q(x, q)) such that σxf = Af . Then for P ∈ GLN(Q(x, q)) we can take
a new basis g = Pf which satisfies σxg = Bg, where

B = (σP )AP−1 . (5.13)

Conversely, if we have two modules with bases f, g and A,B such that σxf = Af and
σxg = Bf , then the two modules are equivalent exactly when there exists a P which relates
A and B as in equation (5.13). This equation is numerically testable. Indeed, assuming P
has polynomial entries the equation

PB = (σP )A (5.14)

is linear in the coefficients of the polynomial in P .

There are two natural duals to these modules over the q–Weyl algebra. These were discussed
in [82] and we will briefly mention them again here.

Definition 13 (Duals of modules of the q–Weyl algebra). Suppose that M is a module
of the q–Weyl algebra. Then we define M∨ to be the module of the q–Weyl algebra with
Q(x, q)–module

M∨ = HomQ(x,q)(M,Q(x, q)) , (5.15)

with action
(q · f∨)(g) = qf∨(g)

(x · f∨)(g) = xf∨(g)

(σ · f∨)(g) = σ
(
f∨(σ−1g)

)
.

(5.16)
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where the inner σ−1 acts on M and the outer σ acts on Q(x, q). We also define M∧ to be the
module of the q–Weyl algebra twisted by the canonical involution ι so that it has Q–vector
space

M∧ = M , (5.17)

with action
q · f∧ = q−1f∧

x · f∧ = xf∧

σ · f∧ = σ−1f∧ ,

(5.18)

where the action on the RHS is the action in M . In other words, we have M∧ =W ⊗ιM .

One can check that this is well defined. The following lemma describes what happens when
M is endowed with a basis.

Lemma 6. Suppose that M has a basis f1, . . . , fr over Q(x, q) then {f∨j : j = 1, · · · , r} such
that f∨j (fi) = δi,j is a basis of M∨ and {f∧i : j = 1, . . . , r} such that f∧i = 1 ⊗ι fi is a basis
of M∧. Moreover, if

σ

f1

:
fr

 = A(x, q)

f1

:
fr

 , (5.19)

then

σ

f∨1:
f∨r

 = A(x, q)−T

f∨1:
f∨r

 , and σ

f∧1:
f∧r

 = A(qx, q−1)−1

f∧1:
f∧r

 . (5.20)

These dualities will be important in relation to proving quantum modularity. Next, we will
consider some simple rank one modules.

5.2 The Pochhammer symbol and the θ–function
Definition 14 (Pochhammer symbol). For x ∈ C and |q| < 1 let

(x; q)∞ =
∞∏
j=0

(1− xqj). (5.21)

Then define

(x; q)n =
(x; q)∞

(xqn; q)∞
, (5.22)

which simplifies for n ∈ Z to

(x; q)n =

{ ∏n−1
i=0 (1− xqj) if n ≥ 0∏−n
i=1(1− xq−j)−1 if n < 0

. (5.23)
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The Pochhammer symbol satisfies a first order q–difference equation

(1− x)f(qx; q)− f(x; q) = 0 . (5.24)

We can calculate the Taylor series around x = 0 of (x; q)∞ using the q–difference equation
and the initial condition at x = 0. This method is one of the main tools when proving
identities.

Lemma 7 (q–binomial theorem). [206, Prop. 2] For x ∈ C and |q| < 1

(x; q)∞ =
∞∑
k=0

(−1)k
qk(k−1)/2

(q; q)k
xk. (5.25)

For |x| < 1, |q| < 1 we have
1

(x; q)∞
=

∞∑
k=0

1

(q; q)k
xk. (5.26)

Proof. Let

αk(q) = (−1)k
qk(k−1)/2

(q; q)k
, and f(x; q) =

∞∑
k=0

αk(q)x
k. (5.27)

The quotient of consecutive terms in the sum and tk(qa; q) are given by

αk+1(q)

αk(q)
=

−qk
1− qk+1

, (5.28)

which shows that

f(x; q)− f(qx; q) =
∞∑
k=0

(1− qk+1)αk+1(q)xk = −x
∞∑
k=0

qkαk(x; q) = −xf(qx; q). (5.29)

Therefore,
(1− x)f(qx; q) = f(x; q),

f(qnx; q)
n−1∏
j=0

(1− xqj) = f(x; q),
(5.30)

and so
f(0; q)(x; q)∞ = f(x; q). (5.31)

Then, as f(0; q) = 1, Equation (5.25) follows. A similar proof works for Equation (5.26).
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These expansions allow us to give a natural definition of (x; q)∞ for |q| > 1. Notice that for
|q| > 1 we have

(x; q)∞ =
∞∑
k=0

(−1)k
qk(k−1)/2

(q; q)k
xk =

∞∑
k=0

1

(q−1; q−1)k
(q−1x)k =

1

(q−1x; q−1)∞
. (5.32)

The next fundamental solution to a q–difference equation is given by the θ–function.

Definition 15 (Jacobi θ–function). For x ∈ C and |q| < 1 let

θ(x; q) =
∑
k∈Z

(−1)kqk(k+1)/2xk . (5.33)

This is the Jacobi θ–function but often we will just refer to it as the θ–function.

The θ–function satisfies the first order equation

qxθ(qx; q) + θ(x; q) = 0 . (5.34)

To see this notice that

θ(x; q) =
∑
k∈Z

(−1)kqk(k+1)/2+kxk = −q−1x−1
∑
k∈Z

(−1)k+1q(k+1)(k+2)/2xk+1

= −q−1x−1θ(x; q) .

(5.35)

Then by induction
θ(q`x; q) = (−1)`q−`(`+1)/2x−`θ(x; q) . (5.36)

Using equation (5.32) we take

θ(x; q−1) = θ(q−1x; q)−1 . (5.37)

Moreover,
θ(x−1; q) = θ(q−1x; q) . (5.38)

We can prove a product formula for the θ–function using Lemma 7.

Theorem A–30 (Jacobi triple product identity). We have the following identity

θ(x; q) = (qx; q)∞(x−1; q)∞(q; q)∞ . (5.39)

Proof. From Lemma 7, we see that for 1 < |x| < |q−1|

θ(x; q)

(qx; q)∞(x−1; q)∞
=
∑
k∈Z

∞∑
`,m=0

(−1)kqk(k+1)/2+m

(q; q)m(q; q)`
xk+m−`

=
∑
k∈Z

∞∑
`,m=0

(−1)`+m+kq(`−m+k)(`−m+1+k)/2+m

(q; q)m(q; q)`
xk .

(5.40)
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Again using Lemma 7, for k > 0

∞∑
`,m=0

(−1)`+m+kq(`−m+k)(`−m+1+k)/2+m

(q; q)m(q; q)`
=

∞∑
`=0

(−1)`+kq(`+k)(`+1+k)/2

(q; q)`
(q1−k−`; q)∞ = 0 ,

(5.41)
for k < 0

∞∑
`,m=0

(−1)`+m+kq(`−m+k)(`−m+1+k)/2+m

(q; q)m(q; q)`
=

∞∑
m=0

(−1)m+kq(k−m)(k−m+1)/2+m

(q; q)m
(q1+k−m; q)∞ = 0 ,

(5.42)
and finally for k = 0 ,

∞∑
`,m=0

(−1)`+mq(`−m)(`−m+1)/2+m

(q; q)m(q; q)`
=

∞∑
m=0

(−1)mqm(m+1)/2

(q; q)m
(q1−m; q)∞ = (q; q)∞ . (5.43)

Finally, analytic continuation implies the equality holds for x ∈ C×.

5.3 The Pochhammer symbol near roots of unity
The Pochhammer symbol satisfies a q–difference equation and therefore so will it’s asymp-
totics. Therefore, we can phrase this for the results of the computations of Section 4.3 and
Section 4.5. Firstly, the constants give rise to a function from roots of unity for generic
parameters, which satisfy a q–difference equation for q ∈ lµ.. .
Lemma 8. The cyclic dilogarithm of definition 12 satisfies the q–difference equation

(1− qmx)∆(m+ 1, x; q) = ∆(m,x; q) . (5.44)

This gives a solution to the module of the infinite Pochhammer symbol at roots of unity.
However, when x = 1, this equation become degenerate at roots of unity and we find the
Pochhammer symbol has asymptotics given in Lemma 5. The asymptotics of Lemma 5 still
satisfy a q–difference equation where q = e(a/c+ τ̃γ/|c|) as a formal series in τ̃γ for a/c ∈ Q.
We can do the same when x 6= 1 giving an all orders version of Lemma 8. Firstly, let

Φa/c(m,x, τ̃γ) = exp

( ∞∑
k=0

(2πiτ̃γ)
k−1

k!

|c|−1∑
`=0

Bk

(m+ `

|c|
)

Li2−k

(
e
(

(m+ `)
a

c

)
x
))

(5.45)

Lemma 9. The formal series from equation 5.45 satisfies the q–difference equation

(1− e(ma/c+mτ̃γ/|c|)x)Φa/c(m+ 1, x, τ̃γ) = Φa/c(m,x, τ̃γ) . (5.46)
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Finally, the case where x = e(−ja/c) for j−m ∈ {0, . . . , |c|−1} we get a difference equation
for the series of Lemma 5. Let

Φa/c(m, j, τ̃γ) = 2π
√
−iτ̃γ

(
− 2πi

j

|c| τ̃γ
)− j

|c|
( j
|c|
) j
|c|

Γ
( j
|c|
)−1

× exp

( ∞∑
k=0

(2πiτ̃γ)
k−1

k!

` 6=j∑
0≤`≤|c|−1

Bk

(m+ `

|c|
)

Li2−k

(
e
(

(`− j)a
c

))
− 2πi

24τ̃γ
+
∞∑
k=2

(2πiτ̃γ)
k−1

k!
Bk

(m+ j

|c|
)
ζ(2− k)

) (5.47)

Lemma 10. The formal series from equation 5.45 satisfies the q–difference equation

(1− e((m− j)a/c+mτ̃γ/|c|))Φa/c(m+ 1, j, τ̃γ) = Φa/c(m, j, τ̃γ) . (5.48)

Note that in this case the power of τ̃γ changes with m. This is fundamentally due to the
fact the difference equation leads to multiplication by 0 at leading order and we will see that
this corresponds to slopes on an associated Newton polygon discussed in Section 5.4. We
can then consider the θ–function at roots of unity using the triple product. We then need
the function given in equation (8.8) and again here

ε(q) =
√
−i

ord(q)−1∏
`=1

(
1− q`

) 1
2
− `

ord(q) , (5.49)

Corollary 6. We have

∆(m+ 2, x; q)∆(−m− 1, x−1; q)ε(q) = −q−m−1x−1∆(m+ 1, x; q)∆(−m,x−1; q)ε(q) (5.50)

The all orders version uses

Φa/c(m+ 1, x, τ̃γ)Φa/c(−m,x−1, τ̃γ)Φa/c(1, |c| − 1, τ̃γ)Φa/c(1, |c| − 1, τ̃γ)

= exp

(
− log(−e(ma|c|/c)x|c|)2

4πi|c|τ̃γ

)
∆(m+ 1, x; q)∆(−m,x−1; q)ε(e(a/c))

× e

(
− τ̃γ

2|c|
(
(m+ 1)2 − (m+ 1)

)
− τ̃γ

8|c|

)
.

(5.51)

Corollary 7. We have

Φa/c(m+ 2, x, τ̃γ)Φa/c(−m− 1, x−1, τ̃γ)Φa/c(1, |c| − 1, τ̃γ)

= −q̃−m−1
γ x−1Φa/c(m+ 1, x, τ̃γ)Φa/c(−m,x−1, τ̃γ)Φa/c(1, |c| − 1, τ̃γ) .

(5.52)
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5.4 The Frobenius method
Linear q–difference equations can be solved formally in a completely analogous way to differ-
ential equations. We start by computing a Newton polygon. To each edge we can construct
solutions. Firstly, we flatten the edge by multiplying by a θ–function, which is the analogue
of multiplying by the exponential when solving differential equations. Then we solve an
associated indicial polynomial and finally a recursion for the coefficients in an expansion.

Remark 16. We saw that the constants associated q–difference equations are elliptic func-
tions solving equation (5.12). Therefore, for algorithmic construction of solutions we need
to choose a solution to equation (5.34). We have a solution with good analytic and modular
properties so all of our constructions will be relative to this convention.

The basic Ansatz for our solutions will be functions of the form

θκ(x; q)
∞∑
k=0

ak(q)x
k θ(ρ

−1x; q)

θ(x; q)
, (5.53)

where a0 6= 0 and (using equation (5.37)),

θκ(x; q) =

{ θ(xκ; qκ) if κ > 0 ,
1 if κ = 0 ,

θ(qκxκ; q−κ)−1 if κ > 0 ,
(5.54)

which is the analogue of equation (3.74). Take a q–difference equation

r∑
i=0

si∑
j=0

αi,j(q)x
jσif = 0 , (5.55)

which we can assume has this form with the addition of some αi,0(q) 6= 0 by multiplying
on the left by powers of x. The Newton polygon is defined to be the convex hull of the
points (i, j) where αi,j(q) 6= 0. Suppose that f is a solution to equation (5.55) then taking
g(x; q) = θ(xκ; qκ)f(x; q) we have

0 =
r∑
i=0

si∑
j=0

αi,j(q)x
jσi(θ(xκ; qκ)−1g(x; q)) =

r∑
i=0

si∑
j=0

αi,j(q)x
jθ(qκixκ; qκ)−1σig

= θ(xκ; qκ)−1

r∑
i=0

si∑
j=0

(−1)iqκi(i+1)/2αi,j(q)x
j+iκσig .

(5.56)

Therefore, we see that θ(xκ; qκ)f(x; q) satisfies a difference equation whose Newton polygon
is given by the original Newton polygon sheared parallel to the vertical axis with weight
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κ. Therefore, by multiplying by an appropriate θ function we can flatten any edge of the
Newton polygon of a q–difference equation satisfied by a function.

This deals with the first part of our Ansatz (5.53). Therefore, assume that on the bottom of
the Newton polygon of the difference equation (5.55) satisfied by f there is a flat edge and
take κ = 0. Then we can substitute the Ansatz into equation (5.55) to get

0 =
θ(ρ−1x; q)

θ(x; q)

r∑
i=0

si∑
j=0

αi,j(q)x
j

∞∑
k=0

ak(q)q
ikxkρi

=
θ(ρ−1x; q)

θ(x; q)

∞∑
k=0

si∑
j=0

ak(q)x
j+k

r∑
i=0

αi,j(q)q
ikρi .

(5.57)

Therefore, as we assume that a0 6= 0, taking the x0 term divided by a0 gives

r∑
i=0

αi,0(q)ρi = 0 . (5.58)

We assumed that some αi,0(q) 6= 0 and moreover that the bottom of the Newton polygon
has a flat edge. This implies that there exists i1 6= i2 ∈ {0, . . . , r} such that αi1,0(q) 6= 01

and αi2,0(q) 6= 0. Therefore, equation (5.58) gives a polynomial equation for ρ of order the
length of the edge, which is at least one. This polynomial is called the indicial polynomial
of this edge. Suppose first that ρ0 is a root of multiplicity one such that ρ0q

Z is not a root.
Substituting this into the q–difference equation gives the system of equations for k ∈ Z≥0

0 =
r∑
i=0

min(si,k)∑
j=0

ak−j(q)αi,j(q)q
i(k−j)ρi0

= ak(q)
r∑
i=0

αi,0(q)qikρi0 +
r∑
i=0

min(si,k)∑
j=1

ak−j(q)αi,j(q)q
i(k−j)ρi0 ,

(5.59)

which by assumption on ρ0 gives a recursive computation of ak in terms of lower order
terms. More generally, if there are n roots of the indicial polynomial in ρ0q

Z counted with
multiplicity, then we can get n solutions coming from these roots. Suppose that ρ0 is a root of
multiplicitym and that ρ0q

Z<0 are not roots. Then take ak = ak(ε; q) with a0(ε; q) = O(εn−m)
so that

r∑
i=0

αi,0(ε; q)ρi0e
iε = O(εn) . (5.60)
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Now substituting ρ0e
ε +O(εn) into the q–difference equation we get equations

0 =
r∑
i=0

min(si,k)∑
j=0

ak−j(ε; q)αi,j(q)q
i(k−j)ρi0e

iε

= ak(ε; q)
r∑
i=0

αi,0(q)qikρi0e
iε +

r∑
i=0

min(si,k)∑
j=1

ak−j(ε; q)αi,j(q)q
i(k−j)ρi0e

iε ,

(5.61)

This completely determines ak(ε; q) + O(εn) in terms of a0(ε; q) + O(ε2n−m) and moreover
ak(ε; q) = O(ε0) . Often we will choose ak(ε; q) = εn−m but imposing this generally could lead
to slightly less natural normalisations. These ε deformed solutions correspond to logarithmic
solutions of differential equations coming from equation (3.76). These solutions will just be
formal solutions as the ak can give rise to divergent series. To make these into functions we
need to apply some resummation procedure.

Remark 17. If we take a discrete version where x = qm for m ∈ Z then we can apply the
same techniques however we will take the Ansatz

(−1)mq−κm(m+1)/2

∞∑
k=0

ak(q)q
kmρm . (5.62)

These methods will be illustrated in an example associated to the figure eight knot 41 defined
in Section 6.5, which was discussed in [82].

Example 45 (A difference equation for the figure eight knot). Consider the q–difference
equation,

tf(t; q) + (1− 3qt)f(qt; q) + (3q2t− 1)f(q2t; q)− q3tf(q3t; q) = 0 . (5.63)

This has Newton polygon depicted in Figure 5.3. We can apply the Ansatz and solve for the
edge of slope minus one. this has κ = −1 and indicial polynomial

1− q−1ρ−1 = 0 . (5.64)

Then setting a0(q) = −(q; q)2
∞ we find the solution to the recursion

(1− q−k)ak(q)− 2ak−1(q)− qk−1ak−2(q) = 0 . (5.65)

given by

ak(q) = (q; q)2
∞

k∑
`=0

(−1)k+1 qk(k+1)/2

(q; q)`(q; q)k−`
. (5.66)
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Figure 5.1: The Newton polygon of equation (5.63).

This gives a solution

f (−1)(t; q) =
(q; q)2

∞
θ(q−1t; q)

∞∑
k=0

k∑
`=0

(−1)k
qk(k+1)/2

(q; q)`(q; q)k−`
tk . (5.67)

Applying the method to the edge of slope one we get a formal solution

f (1)(t; q) =
θ(t; q)

(q; q)2
∞

∞∑
k=0

k∑
`=0

q`
2−`k

(q; q)`(q; q)k−`
tk . (5.68)

Finally, the edge of slope 0 has solution

f (0)(t; q) =
∞∑
k=0

(−1)kq−k(k+1)/2(q; q)2
kt
k . (5.69)

We can apply the method at infinity. We get the recursion

(1− 3qk−1ρ+ 3q2k−2ρ2 − q3k−3ρ3)ak(q) + qk−1ρ(1− qk−1ρ)ak−1(q) = 0 , (5.70)

to find an ε deformed solution

g(t, ε; q) =
(qeε; q)2

∞
(q; q)2

∞

∞∑
k=0

(−1)k
qk(k+1)/2e(k+1/2)ε

(qeε; q)2
k

t−1−k θ(te
−ε; q)

θ(t; q)
. (5.71)
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giving some solutions

g(t; q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

t−1−k

G(t; q) =
∞∑
k=0

(
− 2G1(q)− 1

2
− θ′(t−1; q)

θ(t−1; q)
+

k∑
j=1

1 + qj

1− qj
)

(−1)k
qk(k+1)/2

(q; q)2
k

t−1−k

G(t; q) =
∞∑
k=0

(
1

2

(
− 2G1(q)− 1

2
− θ′(t−1; q)

θ(t−1; q)
+

k∑
j=1

1 + qj

1− qj
)2

+
1

2

θ′′(t−1; q)

θ(t−1; q)
− 1

2

θ′(t−1; q)2

θ(t−1; q)2
− 1

24
−G2(q)

)
(−1)k

qk(k+1)/2

(q; q)2
k

t−1−k .

(5.72)

where

θ′(t; q) =
∑
k∈Z

(−1)kkqk(k+1)/2tk , and θ′′(t; q) =
∑
k∈Z

(−1)kk2qk(k+1)/2tk . (5.73)

5.5 Resummation of divergent solutions and monodromy
The formal solutions constructed in the previous Section 5.4 can be made into meromorphic
functions via q–Borel resummation. This was studied, for example, in [51, 97, 165, 181]. We
will define the q–Borel resummation of a series associated to a q–difference equation. With
the conventions we have set, the q–Borel transform of a formal series of weight κ is

Bκ
∞∑
k=0

ak(q)x
k =

∞∑
k=0

(−1)kqκk(k+1)/2ak(q)ξ
k (5.74)

When |q| < 1 and κ > 0 this of course improves the convergence of the series. Assuming
that it is convergent, we can define the q–Laplace transform of a function of weight κ > 0

(Lκf)(x, λ; q) =
∑
k∈Z

f(qκkλκx; q)

θ(qκkλκ; q)
. (5.75)

Importantly, the Laplace transformation for κ > 0 introduces an additional variable. This is
refered to as q–Stokes phenomenon. This was discussed in more detail in [82]. Notice that
it is elliptic in the new variable λ

(Lκf)(x, qλ; q) = (Lκf)(x, λ; q) . (5.76)

To define the Laplace transform when κ < 0 we take

(Lκf)(x; q) =

∮
|ξ|=ε

f(ξ; q)θ(x/ξ; q−κ)
dξ

2πiξ
. (5.77)
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Noting that∑
`∈Z

(qκ`λκx)k

θ(qκ`λκ; qκ)
=

xk

θ(λκ; qκ)

∑
`∈Z

(−1)`qκ`(`+1)/2+κ`kλκ(`+k) = (−1)kq−κk(k+1)/2xk , (5.78)

we have the lemma similarly for the κ < 0 by the residue theorem.

Lemma 11. If f(x; q) is a polynomial in x then

LκBκf = BκLκf = f . (5.79)

Note that the statement of this lemma is slightly subtle as the various vector spaces involved
as domains and codomains are all different in general but agree when restricted to polyno-
mials. The first basic analytic property of the Laplace transform is an analogue of Watson’s
lemma.

Theorem A–31 (q–Watson’s lemma). [51, Prop. 1.9] If f(x; q) is a meromorphic function
for x ∈ C× and has an asymptotic expansion2 as x→ 0

f(x; q) ∼
∞∑
k=0

ak(q)x
k , (5.80)

with a0 6= 0, then, if Lκ(f) is convergent we have

Lκ(f)(x, λ; q) ∼
∞∑
k=0

(−1)kq−κk(k+1)/2ak(q)x
k . (5.81)

The next basic properties of the q–Laplace transform describe the behaviour of the additional
elliptic variable. These are given in the following two lemmas, which give integral expressions
for the Laplace transforms of positive weight. Moreover, the first determines the dependence
on the additional elliptic variables in terms of the poles of the function on which we apply
the Laplace transform. These lemmas appeared in [82].

Lemma 12. Assuming that

lim
ε→0

∮
|ξ|=ε±

f(ξt, q)θ(µ−1λ−1ξ; q)

θ(ξµ−1; q)θ(ξλ−1; q)

dξ

2πiξ
= 0 (5.82)

where ε avoids the poles of the integrand we have

L1(f)(t, λ, q)− L1(f)(t, µ, q)

=
θ(λ−1µ; q)(q; q)3

∞
θ(λ−1; q)θ(µ; q)

∑
x∈poles of f

Resξ=x
f(ξ, q)θ(λ−1µ−1t−1ξ; q)

θ(ξλ−1t−1; q)θ(ξµ−1t−1; q)
.

(5.83)

2This involves some kind of uniform bound on the distance to the poles if they accumulate around x = 0.
See [51] for more details.
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This type of residue formula for the Laplace transform is similar to the definition of the
Laplace transform for κ < 0. We can find a similar expression for a single Laplace transform
using a special function called the Appell–Lerch sum studied in [211].

L(t, λ, q) =
1

θ(λ; q)

∑
k∈Z

(−1)k
qk(k+1)/2λk

1− qkλt . (5.84)

Using this we have the following integral expression for the Laplace transform for κ = 1 and
a similar expression can be given for κ > 0.

Lemma 13. We have

(L1f)(t, λ, q) =
∑
k∈Z

Resξ=qkL(ξ−1λ−1, λ, q)f(ξλt, q)
dξ

2πiξ
. (5.85)

Deforming the contour and the residue theorem give the following lemma.

Lemma 14. Assuming that

lim
ε→0

∮
|ξ|=ε±

L(ξ−1λ−1, λ, q)f(ξλt, q)
dξ

2πiξ
= 0 (5.86)

where ε avoids the poles of the integrand we have

(L1f)(t, λ, q) = −
∑

x∈poles of f

L(x−1t, λ, q)Resξ=xf(ξ, q)
dξ

2πiξ
(5.87)

Notice that all the dependence on t and λ is now in the arguments of the Appell-Lerch
sums. This illustrates the important role the residues of the Borel transform play in the
resummation.

We can study the affect of these operations on the Newton polygon of a difference equation.
Notice that

0 = Bκ0 = Bκ
r∑
i=0

si∑
j=0

αi,j(q)x
j(σif)(x; q) = Bκ

∞∑
k=0

r∑
i=0

si∑
j=0

αi,j(q)ak(q)q
ikxj+k

=
∞∑
k=0

r∑
i=0

si∑
j=0

αi,j(q)ak(q)(−1)k+jqκk(k+1)/2+κjk+κj(j+1)/2+ikξj+k

=
r∑
i=0

si∑
j=0

αi,j(q)(−1)jqκj(j+1)/2ξj(σi+κjBκf)(ξ; q) .

(5.88)

Therefore, the weight κ q–Borel transform satisfies a q–difference equations that has a New-
ton polygon, which is a weight κ shear parallel to the horizontal axis of the original Newton
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polygon. The same kind of calculations can be used to show the same shearing property of
the q–Laplace transform when it is convergent.

As with the case of differential equations, the divergence of a particular solution is determined
by the slopes of the Newton polygon. Suppose that we consider a solutions from a flat edge
of a Newton polygon which also contains an edge with negative slope. Suppose that the
largest negative slope is κm and i0 is the smallest value for which αi0,0 6= 0. Then, we have
the recursion

ak(ε; q) =
1∑r

i=i0
αi,0(q)qikρi0e

iε

( i0−1∑
i=0

min(si,k)∑
j=1

ak−j(ε; q)αi,j(q)q
i(k−j)ρi0e

iε

+
r∑

i=i0

min(si,k)∑
j=1

ak−j(ε; q)αi,j(q)q
i(k−j)ρi0e

iε
)

=
1∑r

i=i0
αi,0(q)qikρi0e

iε

( i0−1∑
i=0

min(si,k)∑
j=d(i−i0)κme

ak−j(ε; q)αi,j(q)q
i(k−j)ρi0e

iε

+
r∑

i=i0

min(si,k)∑
j=1

ak−j(ε; q)αi,j(q)q
i(k−j)ρi0e

iε
)
.

(5.89)

Therefore, as k →∞ we have
ak(ε; q) = O

(
q

k2

2κm

)
. (5.90)

Therefore, taking Borel transforms Bκ1 , . . . ,Bκn with
∑n

i=1 κi = 1/|κm| will lead to a conver-
gent function. Moreover, this convergence will satisfy a q–difference equation, which can be
used to explicitly construct an analytic continuation in the Borel plane. This continuation
will have potential singularities whose position is determined by the zeros of

∑s0
j=0 α0,j(q)x

j.
This continuation is therefore meromorphic for ξ ∈ C i.e. ξ =∞ could be an accumulation
point of poles.

Finally, we want to apply a sequence of q–Laplace transforms to get a meromorphic function
that satisfies the original q–difference equation. To apply the correct sequence of Laplace
transforms we use the following lemma.

Lemma 15. [51, Prop. 1.13] Suppose that F (x; q) =
∑∞

k=0 ak(q)x
k is a formal solution to a

difference equation with smallest negative slope κM and suppose that κ < −1/κM . Then, if
the q–difference equation satisfied by BκF has a meromorphic solution f , Lκf is convergent
and satisfies the q–difference equation of F .

Therefore, we see that at most we can only apply a weight −1/κM Laplace transform to our
the combinations of Borel transforms. However, after applying this we can apply the lemma
to the new difference equation. Iterating this we get the following theorem.
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Theorem A–32. [51, Thm. 1.10] Suppose that F (x; q) is a power series solution to a
q–difference equation with negative slopes κ1, . . . , κm. Letting

µ1 = − 1

κ1

, and for i > 1 µi =
1

κi−1

− 1

κi
, (5.91)

we have,
(Lµm · · · Lµ1Bµ1 · · · BµmF )(x, λ1, . . . , λm; q) (5.92)

is a meromorphic function and satisfies the q–difference equation of F .

In this way, we can construct a set of meromorphic functions solving a particular q–difference
equation. Moreover, using Watson’s lemma we can see that this gives a basis filtered with
respect to the slopes of the Newton polygon. This shows that we have a natural construction
of a basis of meromorphic functions to a q–difference equation.

Example 46 (Divergent series for the figure eight knot). Take the formal solution f (1)(t; q) =
θ(t; q)(q; q)−2

∞ f̂
(1)(t; q) given in equation (5.68). Then

B1/2f̂
(1)(ξ, q) =

∞∑
k,`=0

(−1)k+` q
k(k+1)/4−k`/2+`(`+1)/4

(q; q)k(q; q)`
ξk+` (5.93)

is holomorphic for |ξ| < |q−1/4|. Then, using the functional equation

(1− q1/2ξ2)B1/2f̂
(1)(ξ, q) + 2ξB1/2f̂

(1)(q1/2ξ, q)− B1/2f̂
(1)(qξ, q) = 0, (5.94)

we can analytically extend away from ξ ∈ ±q−1/4+ 1
2
Z≤0 where there are poles. Therefore, we

get the meromorphic function

f (1)(t, λ, q) =
θ(t; q)

(q; q)2
∞
L1/2B1/2f̂

(1)(t, λ, q)

=
θ(t; q)

(q; q)2
∞

∑
n∈Z

B1/2f̂
(1)(q

n
2 λt, q)

θ(q
n
2 λ; q

1
2 )

=
θ(t; q)

(q; q)2
∞θ(λ; q1/2)

∑
n∈Z

(−1)nqn(n+1)/4λnB1/2f̂
(1)(q

n
2 λt, q).

(5.95)

where this formula uses the analytic continuation of B1/2f̂
(1). We also had the solution

f̂ (0)(t, q) from equation (5.69). For |ξ| < 1, we have

B1f̂
(0)(ξ, q) =

∞∑
k=0

(q; q)2
kξ
k , (5.96)
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which can be analytically continued away from ξ ∈ qZ≤0 using the relation

(1− ξ)B1f̂
(0)(ξ, q) + 2qξB1f̂

(0)(qξ, q)− q2ξB1f̂
(0)(q2ξ, q) = 1. (5.97)

Therefore, we define

f (0)(t, λ2, q) =
1

θ(λ2; q)

∑
k∈Z

(−1)kqk(k+1)λk2B1f̂
(0)(qkλ2t, q). (5.98)

So up to some initial conditions we can solve q–difference equations algorithmically. We
have seen the methods that apply at the two special points 0 and ∞ i.e. the points fixed
under the action x 7→ qx. This algorithm leads to two Wronskian matrices, one based at 0
and one at ∞. These satisfy the first order equation (5.9) and taking their quotient gives
a matrix of elliptic functions as in equation (5.11). This matrix is called the monodromy
matrix. This matrix stores important information such as the q–Stokes phenomenon and in
general its computation can be a difficult problem. In some simple examples coming from
q–hypergeometric functions, I studied this with Garoufalidis [82] so that for our working
example of the third order equation associated to the figure eight knot 41 we find

Theorem A–33. [82] The monodromy matrix of the difference equation (5.63) is given
explicitly as

M(t, λ1, λ2, q) =

 −1 0 ℘(t, q)

M2,1(t, λ1, q) 1 1
2
℘′(t,q)−℘′(λ2,q)
℘(t,q)−℘(λ2,q)

0 0 1

 (5.99)

where

M2,1(t, λ, q) =
θ(qt; q)θ(tλ; q)θ(tλq−1/2; q)θ(tλ2q−1/2; q)

θ(tλq1/4; q)θ(−tλq1/4; q)θ(tλq−1/4; q)θ(−tλq−1/4; q)θ(q−1λ; q)θ(q−3/2λ; q)
,

(5.100)
and ℘, ℘′ are the Weierstrass elliptic ℘–function and its derivative.

The modularity ofM gives the ability to compute this efficiently as this should lie in a space
of Jacobi forms discussed in Section 7.5, which is finite dimensional once some conditions on
the poles are specified.

5.6 Identities between q–series
This section involves somewhat the opposite question of solving q–difference equations, that
of proving q–series identities. It is important for the previous question of computing mon-
odromy. Proving q–series identities will be an extremely important aspect of computations
in examples that come later. Besides some simple explicit computations I know essentially
one catch all method for the kind of examples of which we are interested.
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In practice, proving an identity between two q–series is difficult. Indeed, proving the value
of two functions at a special point is potentially an extremely difficult problem. However,
as with many aspects of mathematics, deformations become a powerful tool. Proving the
value of two function is the same becomes a much easier problem when one can show the
two functions satisfy the same differential equation and that they have the same boundary
conditions. This is exactly the same with q–series identities. If one can show that two
sequences of q–series of two functions in x and q satisfy the same q–difference equation and
that they have the same boundary conditions then this allows for a proof of the desired
identity. Although this sounds good in general there is one issue. If you start with a special
value then you need to find the right deformations.

For certain identities between q–hypergeometric functions this has been thoroughly under-
stood not only theoretically but algorithmically [209, 194]. This is implemented in [168]. The
other important tool is that the constants of q–difference equations are elliptic functions.
These elliptic functions are computable as we understand the algebra of elliptic functions.
One of the basic and important points is that every entire holomorphic function on an elliptic
curve is constant from Liouville’s theorem.

5.7 Solutions when q is near one

We can solve q–difference equations when q = e~. This gives formal series in ~ with certain
functions as coefficients. If we leave the variable x as the coefficient, then we will take
solutions given by the WKB Ansatz

Φ̂(x; ~) = ~κ log(x)/~ exp

( ∞∑
k=−1

Sk(x)~k
)
. (5.101)

Here the κ will be determined by a slope of an associated Newton polygon while S−1 will be
determined via an analogue of an indicial polynomial. Firstly, we define the Newton polygon
of a q–difference equation3 expanded in powers of ~ given by

r∑
i=0

∞∑
j=0

αi,j(x)~jσiΦ̂(x; ~) = 0 , (5.102)

3With all factors of (1− q)−1 cleared.
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as the convex hull of (i, j) such that ai,j(x) 6= 0. Then choosing the correct κ we can flatten
any edge of the Newton polygon. Notice that for a smooth function f we have

f(em~x) =
∞∑
k=0

~k

k!

∂k

∂~k
f(em~x)

∣∣
~=0

=
∞∑
k=0

~k

k!

(
my

∂

∂y

)k
f(yx)

∣∣
y=1

=
∞∑
k=0

(m~)k

k!

k∑
`=0

S(k, `)y`
∂`

∂y`
f(yx)

∣∣
y=1

=
∞∑
k=0

(m~)k

k!

k∑
`=0

S(k, `)x`f (`)(x)

= f(x) + xf ′(x)m~ + (x2f ′′(x) + xf ′(x))
m2~2

2
+ · · · .

(5.103)

Therefore, given a flat edge of the Newton polygon, we get the following analogue of the
indicial polynomial

r∑
`=0

α`,j(x) exp(`xS ′−1(x)) = 0 . (5.104)

In particular we see that this gives an algebraic equation for exp(xS ′−1(x)) which defines a
meromorphic function on the characterisic variety of the q–difference equation.

Therefore, substituting the Ansatz into a q–difference equation and solving order by order
in ~ gives a sequence of differential equations for Sk(x) which uniquely determine it up to a
constant. Indeed, with this Ansatz once we solve for S ′−1 we will find equations of the form

S ′k(x) = fk(x) , (5.105)

where fk only depends on the difference equation and S ′` for ` < k. There is an ambiguity at
each power of ~ as we only get equations for the first derivative. Fixing these constants and
the κ and S−1 then uniquely gives the solution. This method was used for the Â–polynomial
of Theorem 18 in [47]. Assuming the AJ conjecture 1 the fact the characteristic variety
appears indicates that the A–polynomial appears and gives rise to the complexified volume
in a way that is also expected from the volume conjecture 3. We apply this method to the
previous equation.

Example 47. We have the q–difference equation

tΦ̂(t; ~) + (1− 3e~t)Φ̂(e~t; ~) + (3e2~t− 1)Φ̂(e2~t; ~)− e3~tΦ̂(e3~t; ~) = 0 . (5.106)

This has one edge of slope zero and we get the indicial polynomial

0 = t+ (1− 3t) exp(tS ′−1(t)) + (3t− 1) exp(2tS ′−1(t))− t exp(3tS ′−1(t))

= (1− exp(tS ′−1(t)))(t+ (1− 2t) exp(tS ′−1(t)) + t exp(2tS ′−1(t))) .
(5.107)

This gives two solutions up to constants

exp(tS ′−1(t)) = 1 and so S−1(t) = 0 , (5.108)
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and

exp(tS ′−1(t)) =
2t− 1±

√
1− 4t

2t
and so

S−1(t) = Li2

(1

2
(1 +

√
1− 4t)

)
− Li2

(1

2
(1−

√
1− 4t)

)
+

1

2

(
log(1 +

√
1− 4t)2

− log(−1 +
√

1− 4t)2 + 2
(

log(−1 +
√

1− 4t)− log(1 +
√

1− 4t)

+ log
( 1 +

√
1− 4t

−1 +
√

1− 4t

))
log(−4t)

− 2
(

log(−1 +
√

1− 4t) log
(1

2
(1 +

√
1− 4t)

)
+ 2
(

log(1 +
√

1− 4t) log
(1

2
(1−

√
1− 4t)

))
.

(5.109)
Using this we can solve for S ′0(t) by considering the ~ term of

t+ (1− 3e~t)
Φ̂(e~t; ~)

Φ̂(t; ~)
+ (3e2~t− 1)

Φ̂(e2~t; ~)

Φ̂(t; ~)
− e3~t

Φ̂(e3~t; ~)

Φ̂(t; ~)
= 0 . (5.110)

Noting that we have

Φ̂(em~t; ~)

Φ̂(t; ~)
= exp

(
mxS ′−1(x) +

(m2

2
x2S ′′−1(x) +

m2

2
xS ′−1(x) +mxS ′0(x)

)
~ + · · ·

)
(5.111)

we can compute the ~ term as

−16t2(−1 + 6t+ 2t(−1 + 4t)S ′0(t))

(−1 +
√

1− 4t)4(1 +
√

1− 4t)
√

1− 4t
= 0 . (5.112)

This gives S ′0(t) and integrating we find that

S0(t) =
−1

4
log(1− 4t)− 1

2
log(t) . (5.113)

Following the same procedure we find the equation for S ′1(t) given by

(−1 +
√

1− 4t)(−1− 5t+ 6t2) + 6(1− 4t)2(−1 +
√

1− 4t+ 4t)S ′1(t) = 0 , (5.114)

which when solving and integrating gives

S1(t) =
−12t2 + 2t− 1

24(1− 4t)3/2
. (5.115)
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Figure 5.2: The Newton polygon of equation (5.116).

We saw that letting q = e~ we can solve difference equations with asymptotic series depending
on x. Now a simpler method to solve these equations is to let x = em~. Doing this, the
method will again follow exactly the same method we used to solve q–difference equations
in terms of q–series, however, there will be again a different Newton polygon. The Newton
polygon will be the same as we used for fixed x, however, now x can contribute ~ terms. For
example,

σ + (1− x) (5.116)

would have a flat Newton polygon shown on the left of Figure 5.2 for fixed x while for x = em~

it would have a Newton polygon with one edge of slope −1 shown on the right of the figure.
We then solve using the Ansatz

Φ̂(m; ~) = ~κ0mγm exp
( ∞∑
`=2

α−1,`m
`~`−1

) ∞∑
k=0

k∑
`=0

αk,`m
`~k = ~κ0mγmΦ(m; ~) . (5.117)

where again κ come from the slope of the Newton polygon, γm solves a recursion correspond-
ing to solving the indicial polynomial and the others can be solved recursively from these
solutions. We can consider our previous example with x = qm~.

Example 48. Consider the q = e~ analogue of equation (5.63)

em~Φ̂(m; ~) + (1− 3e(m+1)~)Φ̂(m+ 1; ~)

+ (3e(m+2)~ − 1)Φ̂(m+ 2; ~)− e(m+3)~Φ̂(m+ 3; ~) = 0 .
(5.118)

This has Newton polygon shown in Figure 5.3. We find the recursion for γm give by

γm − 2γm+1 + 2γm+2 − γm+3 = 0 . (5.119)

The solutions then come in the form γm = ρm where

ρ3 − 2ρ2 + 2ρ− 1 = (ρ2 − ρ+ 1)(ρ− 1) = 0 . (5.120)
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Figure 5.3: The Newton polygon of equation (5.118).

The three solutions are

ρ0 =
1

2
±
√
−3

2
and ρ0 = 1 . (5.121)

Then we have

em~Φ(m; ~) + (1− 3e(m+1)~)ρ0Φ(m+ 1; ~)

+ (3e(m+2)~ − 1)ρ2
0Φ(m+ 2; ~)− e(m+3)~ρ3

0Φ(m+ 3; ~) = 0 .
(5.122)

Therefore, taking Φ(0; ~) = 1 we can calculate the ~ term in the expansion of equation (5.122)
to find for ρ = 1/2−

√
−3/2 that

(4− 3
√
−3− 2

√
−3m)α−1,2 +

1

2
(−3− 3

√
−3− 2m− 2

√
−3α1,1) = 0 . (5.123)

Then solving this triangular linear system for α−1,2, α1,1 we find that

α−1,2 = − 1

2
√
−3

, and α1,1 = −5

6
. (5.124)

This gives

Φ(m; ~) = 1 +
(√−3

6
m2 − 5

6
m
)
~ + · · · . (5.125)

Taking the solution we found for the t dependent version in Example 47, we can substitute
t = em~ and find the same solution. However, this method is a slightly simplified complexity
of course with the pay off of less information.

These algorithms give rise to efficient ways to compute solutions to q–difference equations as
asymptotic series. For certain series, there is an even more efficient way to compute them.
This makes use of the Habiro ring, which will be the topic of the next section.
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5.8 The Habiro ring
Definition 16 (The Habiro ring). The Habiro ring is defined to be the inverse limit,

Ẑ[q] = lim
←−
n

Z[q]/((q; q)n) . (5.126)

This means that an element is represented by (hn(q) + (q; q)nZ[q])n∈Z≥0
such that for m < n

we have
hn(q) + (q; q)mZ[q] = hm(q) + (q; q)mZ[q] . (5.127)

Therefore, all elements in f ∈ Ẑ[q] can be represented, non-uniquely, via a sequence fk(q) ∈
Z[q] by

f(q) =
∞∑
k=0

fk(q)(q; q)k . (5.128)

Example 49 (Non–uniqueness of representatives in Ẑ[q]). [94, Prop. 7.1] We have the
following equality in Ẑ[q]

1 =
∞∑
k=0

qk+1(q; q)k . (5.129)

This follows from the fact that

∞∑
k=0

qk+1(q; q)k =
∞∑
k=0

(qk+1−1)(q; q)k+
∞∑
k=0

(q; q)k = −
∞∑
k=1

(q; q)k+
∞∑
k=0

(q; q)k = 1 . (5.130)

Remark 18. As pointed out, for example in [126], the Habiro ring can be thought of as a
deformation of

Ẑ = lim
←−
n

Z/(n!Z) . (5.131)

To each element of the Habiro ring, we can associate a function from roots of unity, lµ.. , to
C. For f ∈ Ẑ[q] represented by fk(q) we define a function4 f : lµ.. → C such that for ζn = 1
we have

f(ζ) =
n−1∑
k=0

fk(ζ)(ζ; ζ)k ∈ Z[ζ] . (5.132)

This is well defined as the evaluation map at roots of unity sends all but finitely many of
the ideals (q; q)nZ[q] to zero. This function uniquely determines the element in the Habiro
ring, as shown in the following theorem.

4This is a slight abuse of notation as we are using the same notation for both the element of the Habiro
ring and the function. This is justified by Theorem 34.
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Theorem A–34. [94, Thm. 6.3] If f ∈ Ẑ[q] and f : lµ.. → C is the zero function then f = 0.

We will prove this theorem shortly but first; notice that there exists ck ∈ Z such that

f(q) ∈
m−1∑
k=0

ck(q − 1)k + (q − 1)mẐ[q] . (5.133)

This expansion is called the Ohtsuki expansion [148] and its existence follows from the fact
that for some fk(q) ∈ Z[q], we have

f(q) ∈
m−1∑
k=0

fk(q)(q; q)k + (q; q)mẐ[q] and (q; q)mẐ[q] ⊆ (q − 1)mẐ[q] . (5.134)

Lemma 16. Suppose that f ∈ Ẑ[q]. If p is a prime,

f(ζp) =

p−2∑
`=0

a`ζ
`
p , (5.135)

and

f(q) ∈
p−2∑
k=0

ck(q − 1)k + (q − 1)p−1Ẑ[q] , (5.136)

then,

ck ≡
p−2∑
`=k

(
`

k

)
a` (mod p) . (5.137)

Proof. Notice that

(ζp − 1)p−1 + pZ[ζp] = ζp−1
p + ζp−2

p + · · ·+ 1 + pZ[ζp] = pZ[ζp] . (5.138)

Therefore, reducing (mod p)

f(ζp) + pZ[ζp] =

p−2∑
`=0

a`(ζp − 1 + 1)` + pZ[ζp] =

p−2∑
`=0

∑̀
k=0

(
`

k

)
a`(ζp − 1)k + pZ[ζp]

=

p−2∑
k=0

(ζp − 1)k
p−2∑
`=k

(
`

k

)
a` + pZ[ζp] =

p−2∑
k=0

ck(ζp − 1)k + pZ[ζp] .

(5.139)

Therefore, noting that this ring is (Z/pZ)[ζp − 1]/(ζp − 1)p−1, we find that

ck + pZ =

p−2∑
`=k

(
`

k

)
a` + pZ . (5.140)
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Proof of Theorem 34. From Lemma 16, we see that congruences classes of ck, the coefficients
in the expansion in equation (5.133), modulo all prime numbers are determined by the
function f : lµ.. → C, which therefore also determines ck ∈ Z. Moreover, if f : lµ.. → C is the
zero function then ck = 0 for all k. Therefore,

f(q) ∈
⋂

m∈Z≥0

(q − 1)mẐ[q] . (5.141)

Then we note that⋂
m∈Z≥0

(q − 1)mẐ[q] = 0 , as
⋂

m∈Z≥0

(q − 1)m(Z[q] + (q; q)nZ[q]) = 0 . (5.142)

Sometimes, we are given a function from roots of unity to the complex numbers. If this
function takes values in the cyclotomic integers of the associated root, then it could come
from an element of the Habiro ring. Lemma 16 gives additional conditions. In practice,
one can construct the congruences that the hypothetical ck should satisfy and try to lift
them. If they eventually seem to have a constant lift as we increase the primes, this gives
the possibility that our function is in the Habiro ring. This is illustrated in the code below
for Example 50.

Example 50 (Kontsevich–Zagier function). Kontsevich considered the element of the Habiro
ring

F (q) =
∞∑
k=0

(q; q)k , (5.143)

in relation to Feynman path integrals at a talk in Bonn during October 1997. This function
appeared in the prior work of Kashaev as an invariant of the trefoil [106]. Kontsevich sug-
gested this function had a relation to the Dedekind η–function. Zagier then went on to prove
this relation [204], which he termed a “strange identity”, and found, using [177], a relation
to the dimension of spaces of Vassiliev invariants discussed in [179]. We will use this as an
example to check these basic properties. Firstly, we have the expansion

F (q) = 1− (q − 1) + 2(q − 1)2 − 5(q − 1)3 + 15(q − 1)4 − 53(q − 1)5 + · · · . (5.144)

The first few values at roots of unity are given by

F (ζ2) = 3 , F (ζ3) = −ζ3 + 5 , F (ζ4) = −3ζ4 + 8 , F (ζ5) = −3ζ2
5 − 5ζ5 + 9 .

(5.145)
Now taking the central lift of the congruence classes for c4 coming from Lemma 16, we see
that this stablises to 15 for large enough primes. Of course large enough primes are the
primes greater than 2c4 = 30. One can use the Chinese remainder theorem to lower the size
of the primes needed. This is all done in Code 24.
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Remark 19. Using the Ohtsuki expansion we can replace (q− 1) with exp(~)− 1. This will
produce a formal series in ~ with rational coefficients.

Given a q–difference equation we can ask whether there are any solutions in the Habiro
ring. This seems to be a very special property of q–difference equations however many of the
examples which we study will fall into this class. We can consider our previous example.

Example 51. The q–difference equation (5.63) we saw has solution given in equation (5.69),
which is in a form similar to elements of the Habiro ring. Indeed, taking this q–difference
equation and specialising to t = qm we find the equation

qmf(m; q)+(1−3qm+1)f(m+1; q)+(3qm+2−1)f(m+2; q)−qm+3f(m+3; q) = 0 , (5.146)

which has solution

f(m; q) =
∞∑
k=0

(−1)kq−k(k+1)/2+mk(q; q)2
k ∈ Ẑ[q] . (5.147)

Therefore, using the fact that we can substitute q = e~ into elements of the Habiro ring we
find a solution near q = 1. In this example we find the solution

Φ(m; ~) = 1− ~2 −m~3 +
(
− 1

2
m2 +

47

12

)
~4 +

(
− 1

6
m3 +

95

12
m
)
~5 + · · · . (5.148)

Therefore, we see that solutions in the Habiro ring give rise to solutions near q = 1. However,
they do more than this. They of course gives solutions that are functions from roots of unity
to C but even more they give solutions which have formal series attached to each root of
unity. The constants of these formal series correspond to the function from roots of unity
and we have natural candidates for other solutions that are functions from roots of unity.
Indeed, we saw in Section 4.6 that we can compute the constant terms of asymptotic series
associated to q–hypergeomtric functions. These asymptotics should then provide solutions
to the same q–difference equations. In the next section we will focus on their constant terms
which correspond to functions from root of unity to C.

5.9 “Black magic” formulae

As mentioned previously, if a function in q satisfies a q–difference equation then its asymp-
totics must therefore also satisfy a q–difference equation. We can then consider the leading
asymptotics as it approaches roots of unity. This will provide a function from roots of unity
that will also satisfy the same q–difference equation.
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The form of these asymptotics leads us to explore certain Ansatz of solutions. This was
explored by Garoufalidis and Zagier in unpublished work and [86] not emphasising the q–
difference equations. This was implicit in their work and the q–difference equation perspec-
tive was pushed further in some unpublished joint work with Garoufalidis. The basic idea
here is that we are looking for solutions to homogenous equations which are finite sums
and therefore we want then to have no boundaries. This leads us to consider hypergeomet-
ric sums that are defined as sums over ZN/cZN . These functions will give rise to explicit
representations of the module when we specialise q ∈ lµ.. .
We can explore this with the explicitly computed asymptotics in Example 39.

Example 52. Consider the functions from roots of unity such that for q = e(a/c) we have

fj(m; q) =
∑
r∈Z/cZ

q2r2+rmX
(4r+m)/|c|
j

(qX
1/|c|
j ; q)r

(5.149)

where
1−Xj = X4

j . (5.150)

First, notice that this is well defined as

q2c2+|c|mX
4+m/|c|
j

(qX1/|c|; q)c
= X

m/|c|
j . (5.151)

Then taking the quotient of two consecutive terms in the sum gives

q4r+2+mX4/|c|

1− qr+1X1/|c| . (5.152)

Therefore, we see that

fj(m; q)− fj(m+ 1; q) = q2+mfj(4 +m; q) . (5.153)

The name of this section refers to a joke of Stavros. In particular, given a q–hypergeometric
sum like

∞∑
k=0

q2k2+km

(q; q)k
, (5.154)

it is easy to guess the solution given in Example 52 as they have the same shape. This is
true more generally and give remarkable formulae for the asymptotics of q–hypergeometric
functions at roots of unity, which store interesting information related to the Bloch group [34].

We can push this further and take the full asymptotic series at each root of unity where
q = e(a/c+ τ̃γ/|c|) so that

fj(m; q) ∈ C[[τ̃γ]] . (5.155)
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Unfortunately, there is no particularly nice formula for these asymptotic series as they arise
from stationary phase approximations and therefore from Gaussian integration, which in
general will involve Feynman diagrams. As there is no closed formulae, after the constant
and the initial condition, the solutions can be constructed using a generalisation of the
methods of Example 48 to other roots. Indeed, the Ansatz will now involve powers of the
roots we are expanding at. We will take a simple inhomogenous example, which determines
the shape of the equation.

Example 53. Consider an inhomogenous equation

Φ1/2,m−1(τ̃γ) + ((−1)meτ̃γm/2 − 2)Φ1/2,m(τ̃γ) + Φ1/2,m+1(τ̃γ) = 1. (5.156)

with Φ1/2,m(0) = γ1 + γ−1(−1)m. The we find

γ1 − 2γ1 + γ−1 + γ1 + (−γ−1 + γ1 − 2γ−1 − γ−1) (−1)m = 1 (5.157)

Therefore
γ−1 = 1

γ1 − 4γ−1 = 0
(5.158)

and therefore
Φ1/2,m(0) = 4 + (−1)m . (5.159)

Remark 20. A natural question is whether these functions from roots of unity determine
the associated asymptotic series as we observed for the elements of the Habiro ring. This
would lead to some remarkable consequences especially if they allow for efficient computation
of the asymptotic series.

We close this section remarking on how one can prove identities between functions at roots of
unity. The basic ideas discussed from proving q–series won’t work the functions will no longer
be elliptic with respect to some lattice as the lattice has collapsed to the reals. Therefore, we
find that the basic functions we need to compute become periodic functions. These therefore
come with a Fourier expansion. This means that computing this Fourier expansion will
provide a means of proving identities. This can be thought of as the analogous computation
on the elliptic curve with a node. This is isomorphic to P1 with a point identified. Indeed,
if this function is bounded then it is also constant by Liouville’s theorem.

5.10 “Upside down cake” and the Habiro ring
As noticed in unpublished work of Garoufalidis some years ago, we can construct some
strange looking expressions for certain elements of the Habiro ring. These expressions will
arise when we factorise state integrals.
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Lemma 17. We have the following identity for q = e(a/c) where a/c ∈ Q

(q; q)k =
c

(q−1; q−1)c−1−k
. (5.160)

Proof. Notice that
(q; q)k+1

(q; q)k
= 1− qk+1 =

(q−1; q−1)c−1−k

(q−1; q−1)c−2−k
, (5.161)

and
(q; q)0 = 1 =

c

(q−1; q−1)c−1

, (5.162)

where we note that

(xq−1; q−1)c−1 =
c−1∑
k=0

xk . (5.163)

For example, this can be used to find the identity

c−1∑
k=0

(−1)kq−k(k+1)/2(q; q)2
kt
−1−k = c2

c−1∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

tk−c . (5.164)





Chapter 6

q–hypergeometric equations

The main actors in this thesis are q–hypergeometric functions. These are defined in the
simplest sense as a power series f(x1, . . . , xd) that satisfies a system of equations for i =
1, . . . , d given by (

αi(σ1, . . . , σd; q) + xi βi(σ1, . . . , σd; q)
)
f = 0 . (6.1)

These equations, which are linear in xi, give first order relations between the coefficients in
the expansion of f . This leads to their other definition, which states that they are a sum
over a cone in a lattice where adjacent terms in the lattice are related by multiplication by
a rational function in q, qn1 , · · · , qnd where ni are the coordinates of the lattice.

We will mainly be interested in proper q–hypergeometric functions, which is when the re-
cursions for coefficients completely factor into linear factors. This basically means that the
summands will be q to some quadratic form multiplied by a product of q–Pochhammer
symbols evaluated at some linear forms.

The full description of a q–hypergeometric function is the specialisation of one of the power
series above when we fix some set of xi to constants. To do this requires some convergence,
which may need some kind of resummation in general.

In this section, we will explore some simple examples of q–hypergeometric functions. The
main technical points that we will explore are related to duality. This will be of fundamental
importance for proving quantum modularity. Before this, we close this introduction by noting
that q–hypergeometric sums are efficiently computable. Indeed, given a q–hypergeometric
sum of the form ∑

k∈Zn≥0

ak1,...kn(q) (6.2)

we note that for some rational function f we have a0,...,0,kn+1 = f(k; q)a0,...,0,kn . Therefore,∑
kn∈Z≥0

a0,...,0,kn(q) (6.3)

245
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is efficiently computed from this recursion. Then as the sum is q–hypergeometric the sum∑
kn∈Z≥0

a0,...,0,kn−1,kn(q) satisfies a recursion in kn−1. Computing this recursion and the
previous sum, one can efficiently compute∑

kn−1,kn∈Z≥0

a0,...,0,kn−1,kn(q) . (6.4)

Continuing this logic one can compute the whole sum in O(N) time. However, the higher
dimension the sum requires more initial work as one needs to compute the recursions for the
sum at each stage which leads to an additional O(1) which could incidentally be large.

6.1 Dualities between modules of Nahm sums
Consider the following generalised Nahm sums

GA,B,r(t; q) =
∞∑
k=0

aA,B,r,k(t; q) =
∞∑
k=0

qA(Bk+r)(Bk+r+1)/2BtBk+r

(q; q)Bk+r

. (6.5)

We have
aA,B,r,k+1(t; q)

aA,B,r,k(t; q)
=

qAB(k+1/2)+A(r+1/2)tB

(qBk+r+1; q)B
(6.6)

and therefore, noting that from the q–binomial theorem

(qBk+r+1−B; q)B =
B∑
`=0

(−1)`q`(`+1)/2−`B
(
B

`

)
q

q(Bk+r)`

=
B∑
`=0

(−1)`q−`(`−1)/2

(
B

`

)
q−1

q(Bk+r)` ,

(6.7)

we have
B∑
`=0

(−1)`q−`(`−1)/2

(
B

`

)
q−1

GA,B,r(q
`t; q) = qA(B+1)/2tBGA,B,r(q

At; q) . (6.8)

Suppose that A > 1 = B then we have the difference equation [206, Eq. (37)]

GA,1,0(qAt; q) = q−A/2t−1GA,1,0(t; q)− q−A/2t−1GA,1,0(qt; q) . (6.9)

Therefore, the last row of the companion matrix associated to this q–difference equation is(
q−At−1 −q−At−1 0 . . . 0

)
. (6.10)
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Therefore, A(t, q−1)T last column(
qAt−1 −qAt−1 0 . . . 0

)T
. (6.11)

Therefore taking

P (t; q) =


1 1 . . . 1 1
1 1 . . . 1 0
: : . . . : :
1 1 . . . 0 0
1 0 . . . 0 0

 (6.12)

we find that

A(t, q)P (t; q) =


1 1 . . . 1 0
1 1 . . . 0 0
: : . . . : :
1 0 . . . 0 0
0 0 . . . 0 q−At−1

 = A(q2At, q−1)TP (t; q) . (6.13)

This implies the following proposition.

Proposition 5. The q–difference equation (6.15) for A > 1 = B is associated to a module
M with

M∨ ∼= M∧ . (6.14)

We will need a version of this later for A < B. So suppose that A < B then we have

GA,B,r(q
Bt; q) = qA/2(B+1)+B(B−1)/2(−t)BGA,B,r(q

At; q)

+ (−1)B−1qB(B−1)/2

B−1∑
k=0

(−1)kq−k(k−1)/2

(
B

k

)
q−1

GA,B,r(q
kt; q)

(6.15)

Therefore, the last row of the companion matrix associated to this q–difference equation is

(−1)B−1qB(B−1)/2

(−1)BqB(B−1)/2−1(1−1)/2
(
B
1

)
q−1

(−1)B−1qB(B−1)/2−2(2−1)/2
(
B
2

)
q−1

:

(−1)B−1−AqB(B−1)/2−A(A−1)/2
(
B
A

)
q−1 + qA/2(B+1)+B(B−1)/2(−t)B

:

qB(B−1)/2−(B−1)(B−2)/2
(
B
B−1

)
q−1



T

. (6.16)
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Therefore, A(t, q)−T has first column



q−1(1−1)/2
(
B
1

)
q−1

−q−2(2−1)/2
(
B
2

)
q−1

:

(−1)A+1q−A(A−1)/2
(
B
A

)
q−1 + qA/2(B+1)tB

:

(−1)Bq−(B−1)(B−2)/2
(
B
B−1

)
q−1

(−1)B+1q−B(B−1)/2


. (6.17)

and A(qA+1t, q−1)−1 has first row



q1(1−1)/2
(
B
1

)
q

−q2(2−1)/2
(
B
2

)
q

:

(−1)A+1qA(A−1)/2
(
B
A

)
q

+ qA(B−1)/2+BtB

:

(−1)Bq(B−1)(B−2)/2
(
B
B−1

)
q

(−1)B+1qB(B−1)/2



T

=



q(B−1)−1(1−1)/2
(
B
1

)
q−1

−q2(B−1)−2(2−1)/2
(
B
2

)
q−1

:

(−1)A+1qA(B−1)−A(A−1)/2
(
B
A

)
q−1

+ qA(B−1)/2+BtB

:

(−1)Bq(B−1)(B−1)−(B−1)(B−2)/2
(
B
B−1

)
q−1

(−1)B+1qB(B−1)/2



T

. (6.18)

Let

P (t, q) =


t−(B−1) 0 0 . . . 0 0

0 P2,2 P2,3 . . . P2,(B−1) P2,B

0 P3,2 P3,3 . . . 0 0
: : : . . . : :
0 PB,2 0 . . . 0 0

 (6.19)

where

P2+k,j(t, q)

= (−1)j+k−1q(j+k−1)(B−1)−(j+k)(j+k−1)/2

(
B

j + k

)
q−1

(qkt)−B+1 + δj+k,Aq
A(B−1)/2+1(qkt) .

(6.20)
With this P we see that

A(t, q)
−T

P (t, q)

=



q−1(1−1)/2
(
B
1

)
q−1

t−(B−1) P2,2(t; q) P2,3(t; q) . . . P2,(B−1)(t; q) P2,B(t; q)

−q−2(2−1)/2
(
B
2

)
q−1

t−(B−1) P3,2(t; q) P3,3(t; q) . . . P3,(B−1)(t; q) 0

: : : . . . : :

(−1)A+1q−A(A−1)/2
(
B
A

)
q−1

t−(B−1) + qA/2(B+1)t ∗ ∗ . . . 0 0

: : : . . . : :

(−1)Bq−(B−1)(B−2)/2
(
B
B−1

)
q−1

t−(B−1) PB,2(t; q) 0 . . . 0 0

(−1)B+1q−B(B−1)/2t−(B−1) 0 0 . . . 0 0


(6.21)
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and

(P (qt, q)A(q
A+1

t, q
−1

)
−1

)
T

=



q(B−1)−1(1−1)/2
(
B
1

)
q−1

(qt)−(B−1) P2,2(qt; q) P3,2(qt; q) . . . P(B−1),2(qt; q) PB,2(qt; q)

−q2(B−1)−2(2−1)/2
(
B
2

)
q−1

(qt)−(B−1) P2,3(qt; q) P3,3(qt; q) . . . P(B−1),3(qt; q) 0

: : : . . . : :

(−1)A+1qA(B−1)−A(A−1)/2
(
B
A

)
q−1

(qt)−(B−1) + qA(B−1)/2+1t ∗ ∗ . . . 0 0

: : : . . . : :

(−1)Bq(B−1)(B−1)−(B−1)(B−2)/2
(
B
B−1

)
q−1

(qt)−(B−1) P2,B(qt; q) 0 . . . 0 0

(−1)B+1qB(B−1)/2(qt)−(B−1) 0 0 . . . 0 0


.

(6.22)
Noting that

Pk+1,j(t, q) = Pk,j+1(qt, q) (6.23)

and checking the equality for the first row and column we find that

P (qt, q)A(qA+1t, q−1)−1 = A(t, q)−TP (t, q) . (6.24)

Therefore, we have the following proposition.

Proposition 6. The q–difference equation (6.15) for A < B is associated to a module M
with

M∨ ∼= M∧ . (6.25)

We want to give explicit identities between solutions to these q–difference equations associ-
ated to these dualities. These identities are strictly stronger than the duality but often the
duality will assist in the proof of such identities.

6.2 Identities between functions from duality

Firstly, for A ∈ 2Z we have formulae between the functions at roots of unity q = e(a/c)
and m

fj(m; q) =

∏c−1
`=1

(
1− q`

) `
c
− 1

2
∑

r∈Z/cZ
qAr

2/2+rmXj(m)(Ar+m)/c

(qXj(m)1/c;q)r∏c−1
s=0(1− qs+1Xj(m)1/c)

s+1
c
− 1

2

√
cXj(m)/(1−Xj(m)) + Ac

(6.26)

where
1−Xj(m) = e(am)Xj(m)A (6.27)

Let

f(m; q) =


f1(m; q) · · · fA(m; q)

f1(m+ 1; q) · · · fA(m+ 1; q)
: · · · :

f1(m+ A; q) · · · fA(m+ A; q)

 . (6.28)
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Proposition 7 (Quadratic relations for Nahm sums).

f(m; q)f(−m+ 1− A; q−1)T =


1 1 . . . 1 1
1 1 . . . 1 0
: : . . . : :
1 1 . . . 0 0
1 0 . . . 0 0

 . (6.29)

Proof. We have

f(m− A− 1; q−1)T


1 1 . . . 1 1
1 1 . . . 1 0
: : . . . : :
1 1 . . . 0 0
1 0 . . . 0 0


−1

f(m; q) (6.30)

is periodic as m 7→ m+1/c from Proposition 5. This defines a function on the cusped elliptic
curve and similar to that case if it is bounded it must be constant. Indeed, it has a Fourier
series and therefore if it has limits as m → ±i∞ then it is constant. With this explicit
formula one can compute this limit and find the identity matrix. To do this you use that for
example that as m ∼ i∞, a/c > 0 and for some indexing j of solutions

X1(m) ∼ 1− e(am) + · · · , (6.31)

and for j > 1

Xj(m) ∼ e
(
− am

A− 1

)
e
( j

A− 1
+

1

2A− 2

)(
1 +

e( am
A−1

)

A+ 1
+ · · ·

)
. (6.32)

Plugging in this behaviour and taking the limit can then be explicitly computed as the
identity matrix using the formula for the Gauss sum. For example, one has

f1(m; q) =

∏c−1
`=1

(
1− q`

) `
c
− 1

2
∑
r∈Z/cZ

qAr
2/2+rm(1−e(am)+··· )(Ar+m)/c

(q(1−e(am)+··· )1/c;q)r∏c−1
s=0(1− qs+1(1− e(am) + · · · )1/c)

s+1
c
− 1

2
√
c(1− e(am) + · · · )/(1− (1− e(am) + · · · )) + Ac

=

∏c−1
`=1

(
1− q`

) `
c
− 1

2
∑
r∈Z/cZ

qAr
2/2+rm(1−e(am)(Ar+m)/c+··· )

(q(1−e(am)/c+··· );q)r∏c−1
s=0(1− qs+1(1− e(am)/c + · · · ))

s+1
c
− 1

2
√
ce(−am) + · · ·

∼ 1 + O(e(ma/c)) ,

(6.33)

which is already enough to calculate the (1, 1) entry of

f(−m+ 1− A; q−1)T


0 0 . . . 0 1
0 0 . . . 1 −1
: : . . . : :
0 1 . . . 0 0
1 −1 . . . 0 0

 f(m; q) . (6.34)
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For the other entries, we use the fact that for j > 1 we have

fj(m; q) = µj(m)e
(

log(Xj(m))
m

c
+

ma

2c(A− 1)

) 1√
A− 1

(
1 +O

(
e
( ma

c(A− 1)

)))
,

(6.35)
where µj(m) is a root of unity with the properties that

A−1∑
j=1

µj(m) = 0 , and µj(m)µj(−m) = 1 . (6.36)

This follows from the computations∑
r∈Z/cZ

qAr
2/2+rmXj(m)Ar/c

(qXj(m)1/c; q)r
∼

∑
r∈Z/cZ

q(A−1)r2/2+r(m−1)Xj(m)(A−1)r/c (6.37)

is asymptotic to a root of unity times
√
A− 1 where we note that qmXj(m)(A−1)r/c is asymp-

totic to root of unity plus lower order terms while

c−1∏
s=0

(1− qs+1Xj(m)1/c)
s+1
c
− 1

2 ∼ Xj(m)
1
2c

c−1∏
s=0

(−qs+1Xj(m)1/c)
s+1
c
− 1

2

Xj(m)
s+1

c2
− 1

2c

(6.38)

is asymptotic to e(− ma
2c(A−1)

) times a root of unity. Therefore, as f(−m + 1 − A, q−1)T has
first row 1 + O(e(ma/c)) we see that as the first row of the product in equation (6.34) is
given by the first row of f(m; q) up to exponentially small contributions. We can then choose
an interval for m which makes this clearly exponentially small. Similarly, the rest are all
exponentially small except when we are on the diagonal where all A − 1 terms not in the
first column combine each giving 1/(A− 1) and exponentially small corrections. Therefore,
as m ∼ i∞ we see that this product limits to the identity. This completes the proof.

6.3 Nahm sums and Neumann–Zagier equivalences
Recall, that to ideal triangulations of three–manifolds we can associated the Neumann–Zagier
matrices of Section 1.11. These matrices are the top half of a symplectic matrix. We then
saw that under various changes to the data of the triangulations we can find equivalence
between these upper half symplectic matrices, which were described in Section 1.12. There
is a somewhat natural q–series we can associated to any upper half symplectic matrix (A,B)
given as some kind of generalised Nahm sum

gA,B(t; q) =
∑

k∈ZN/ ker(BT)

q
1
2
kTABTkt

(BTk)1

1 · · · t(BTk)N
N

(q; q)(BTk)1
· · · (q; q)(BTk)N

. (6.39)
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Note that as Im(BT) = Ker(B)⊥ and the dimension of the image of B and BT agree, we
see that B : Im(BT) → Im(B) is an isomorphism. Therefore, there exists a matrix a such
that Ba` = A` for ` ∈ Im(BT) as A` ∈ Im(B) from the symplectic property ABT = BAT.
Therefore, we have

gA,B(t; q) =
∑

`∈Im(BT)

q
1
2
`Ta`t`11 · · · t`NN

(q; q)`1 · · · (q; q)`N
. (6.40)

The generators of the equivalence classes between Neumann–Zagier matrices then become
relations between these q–series when they are convergent. The best way to view these
relations is at the level of q–holonomic modules, however there are subtleties. In particular
the 2 − 3 move changes the algebra over which the module is defined and one needs to
consider pull back modules.

Remark 21. It was observed with Garoufalidis that even though the 2 − 3 Pachner move
induces an isomorphisms between one module and a pullback module, the ranks of these
holonomic systems can change under a 2 − 3 Pachner move without the pullback. This
prevents a result of a similar form to Theorem 1.

The first relation of equation (1.59) is clear for all examples. We won’t consider the full
generality of the other relations here and instead focus on the relations between rank one
Nahm sums for equation (6.5). Firstly, notice that for the second relation of equation (1.62)
with P ∈ Z>0 we have

GA,B,r(t; q) =
∞∑
k=0

qA(Bk+r)(Bk+r+1)/2BtBk+r

(q; q)Bk+r
=

P−1∑
s=0

∞∑
k=0

qA(B(Pk+s)+r)(B(Pk+s)+r+1)/2BtB(Pk+s)+r

(q; q)B(Pk+s)+r

=
P−1∑
s=0

∞∑
k=0

qPA(PBk+Bs+r)(PBk+Bs+r+1)/2PBtPBk+Bs+r

(q; q)PBk+Bs+r
=

P−1∑
s=0

GPA,PB,Bs+r(t; q) .

(6.41)
In a similar direction, we have

GA
B
,1,0(e(s/B)t; q) =

∞∑
k=0

e
(ks
B

)qAk(k+1)/2Btk

(q; q)k
=

B−1∑
r=0

e
(rs
B

) ∞∑
k=0

qA(Bk+r)(Bk+r+1)/2Btk

(q; q)Bk+r

.

(6.42)
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A 1− A−1

Figure 6.1: The Newton polygon of two related Nahm sums.

Then for the relation of equation 1.64 we have for B = 1 and A ∈ Z>1

GA,1,0(t; q) =
∞∑
k=0

qAk(k+1)/2tk

(q; q)k
=

1

(q; q)∞

∞∑
k=0

qAk(k+1)/2tk(qk+1; q)∞

=
1

(q; q)∞

∞∑
k,`=0

(−1)`
qAk(k+1)/2+`(`+1)/2+k`tk

(q; q)`

=
1

(q; q)∞

A−1∑
r=0

∞∑
`=0

(−1)A`+r
q(A`+r)(A`+r+1)/2

(q; q)A`+r
θ(−qA`+rt; qA)

=
1

(q; q)∞

A−1∑
r=0

qr(r+A)/2Atr/Aθ(−qrt; qA)GA−1,A(−q(1−A)/2At−1/A; q) .

(6.43)

So we see that the Nahm sums at (A, 1) and (1 − A−1, 1) are related. This relation is
extremely useful. For example, compare the two Newton polygons in Figure 6.1. Therefore,
for (1−A−1, 1) we can construct a basis of power series solutions whereas for (A, 1) we need
to apply some q–Borel resummation.

6.4 Deformations and the Rogers–Ramanujan identities
We close this section on Nahm sums with a discussion on deformation of q–hypergeometric
sums. In particular, given a q–hypergeometric sum∑

k∈ZN
ak(q) (6.44)

often we can naturally take the sum ∑
k∈ZN

ak+ε(q) (6.45)
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where for the Pochhammer symbols

(q; q)k+ε =
(qk+ε+1; q)∞

(q; q)∞
=

(qε+1; q)∞
(q; q)∞(qeε; q)k

. (6.46)

These q–hypergeometric functions that arise from these deformations will then satisfy the
same q–difference equations. Then taking the natural deformations, they seem to satisfy
the same modularity properties of the original functions. These deformations are similar to
the Example 31. We will consider a special example of this and prove the modularity later.
Consider, the deformed Nahm sum for (2, 1).

Gm(x; q) =
(qx; q)∞
(q; q)∞

∑
k∈Z

qk
2+kmx2k+m

(qx; q)k
. (6.47)

This satisfies the q–difference equation

Gm(x; q)−Gm+1(x; q) = qm+1Gm+2(x; q) , (6.48)

which we see is independent of x as we explained. The functions form = 0, 1 are deformations
of the Roger–Ramanujan functions[164]. Take

Fm(x; q) = x2m (qx; q)∞
(qm+1x; q)∞

∑
k

(−1)kq2kmx5kqk(5k−1)/2(1− q2k+mx2)
(qm+1x; q)k−1

(qx; q)k
. (6.49)

Theorem 2. We have the following equality

Gm(x; q) = − (q; q)2
∞

x3qθ(−x; q)θ(q
1
2x; q)θ(−q 1

2x; q)
Fm(x; q) . (6.50)

Proof. Firstly, we can check that both sides satisfy the same recursion in m. Then noting
that (

Gm+1(x; q) Gm+2(x; q)
Fm+1(x; q) Fm+2(x; q)

)
=

(
Gm(x; q) Gm+1(x; q)
Fm(x; q) Fm+1(x; q)

)(
0 q−m−1

1 −q−m−1

)
(6.51)

we can show that

det

(
qm

2
G2m(x; q) qm

2+mG2m+1(x; q)

qm
2
F2m(x; q) qm

2+mF2m+1(x; q)

)
(6.52)

is independent of m. To show that this vanishes let(
GE(x; q) GO(x; q)
FE(x; q) FO(x; q)

)
= lim

m→−∞

(
qm

2
G2m(x; q) qm

2+mG2m+1(x; q)

qm
2
F2m(x; q) qm

2+mF2m+1(x; q)

)
(6.53)
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Then from the formulae

GE(x; q) =
θ(−q−1x2; q2)

(q; q)∞
, FE(x; q) =

(q; q)∞
θ(x−1; q)

(θ(−q−4x6; q6)− x2θ(−q−2x6; q6)) ,

GO(x; q) =
xθ(−x2; q2)

(q; q)∞
, FO(x; q) = − (q; q)∞

θ(x−1; q)
(x3θ(q−1x6; q6)− x5qθ(qx6; q6)) .

(6.54)
we see that

GE(qx; q) = q−1x−2GE(x; q) , FE(qx; q) = −q−2x−5FE(x; q) ,

GO(qx; q) = q−1x−2GO(x; q) , FO(qx; q) = −q−2x−5FO(x; q) .
(6.55)

Therefore we see that

FE(x; q)

a2θ(x; q)3GE(x; q)
and

FO(x; q)

a2θ(x; q)3GO(x; q)
(6.56)

are elliptic. With multiplicity, we see that the number of pole is equal to the number of
zeros. Then notice that

• θ(x3; q)GE(x; q) has only zeros and specifically x ∈ qZ and −q−1x2 ∈ q2Z. Therefore
x ∈ qZ with multiplicity 3 or x ∈ ±iq 1

2
+Z with multiplicity 1,

• θ(x3; q)GO(a; q) has only zeros and specifically x ∈ qZ and −x2 ∈ q2Z. Therefore x ∈ qZ
with multiplicity 3 or x ∈ ±iqZ with multiplicity 1.

Then we see that there are 5 poles and therefore as FE(a; q) and FO(a; q) only have a
removable singularity at x = qZ we see that we have 5 zeros. It is then easy to find all these
zeros. Explicitly,

• FE(x; q) = 0 iff x ∈ −qZ,±q 1
2

+Z,±iq 1
2

+Z

• FO(x; q) = 0 iff x ∈ −qZ,±q 1
2

+Z,±iqZ.
Therefore, we see that

FE(x; q)GO(x; q)

GE(x; q)FO(x; q)
(6.57)

is holomorphic and elliptic and therefore constant in x. Noting that

FE(1; q)GO(1; q)

GE(1; q)FO(1; q)
= 1 , (6.58)

which shows that

det

(
qm

2
G2m(x; q) qm

2+mG2m+1(x; q)

qm
2
F2m(x; q) qm

2+mF2m+1(x; q)

)
= 0 , (6.59)
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we see that
Gm(x; q)

Fm(x; q)
(6.60)

is independent of m and in particular

Gm(x; q)

Fm(x; q)
=

GE(x; q)

FE(x; q)
=

GO(x; q)

FO(x; q)
. (6.61)

Then using elliptic functions again and the evaluation at x = 1 we see that

GE(x; q)

FE(x; q)
= − (q; q)2

∞

x3qθ(−x; q)θ(q
1
2x; q)θ(−q 1

2x; q)
(6.62)

Therefore we finally get to the identity

Gm(x; q) = − Fm(x; q)(q; q)2
∞

x3qθ(−x; q)θ(q
1
2x; q)θ(−q 1

2x; q)
. (6.63)

6.5 Descendant Kashaev invariant and q–series

To a knot the Â polynomial from Theorem 18 associated a natural q–difference equations.
There are other natural q–difference equations associated to knots more recently defined [71].
These difference equations always come from well defined invariants from roots of unity.
However, it has become clear [92, 21, 68, 85] that considering solutions to these q–difference
equations in q–series can give rise to functions related to the knot. They give a promising
approach to analytic continuation of Chern–Simons theory expected in [197].

From the work of Habiro [94, 96] we have the cyclotomic expansion of Theorem 17. This
turns the information of the coloured Jones polynomials JN into the cyclotomic coefficients
Ck. This sequence is q–holonomic and satisfies the recursion referred to as the Ĉ–polynomial.
This was studied in [79]. Recall the cyclotomic expansion is of the shape

JN(q) =
∞∑
k=0

Ck(q)(q
1+N ; q)k(q

1−N ; q)k . (6.64)

Then the Ĉ–polynomial is related to the Â–polynomial in a similar way to a Fourier trans-
form. In [71], a deformation of the coloured Jones polynomial was given as

JN,m(q) =
∞∑
k=0

Ck(q)(q
1+N ; q)k(q

1−N ; q)kq
mk . (6.65)
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This is called the descendant coloured Jones polynomial. This sequence is useful as we can
specialise to N = 0 to define the descendant Kashaev invariant

J0,m(q) =
∞∑
k=0

Ck(q)(q; q)
2
kq
mk . (6.66)

Before, the Kashaev invariant did not come as part of a family, and so this becomes extremely
useful. Moreover, the Ĉ–polynomial give rise to a recursion for the J0,m(q) as a sequence of
elements of the Habiro ring.

Example 54 (Descendant Kashaev invariant of 41). The descendant Kashaev invariant of
the figure eight knot 41 is given by

J0,m(q) =
∞∑
k=0

(−1)kq−k(k+1)/2+km(q; q)2
k . (6.67)

This sequence satisfies the inhomogeneous recursion

qm−1J0,m−1(q) + (1− 2qm)J0,m(q) + qm+1J0,m+1(q) = 1 . (6.68)

This example relates to our previous working Example 45. We see that there one can
naturally compute q–series which satisfy the same homogenised recursion. This had a basis
of three solutions as we saw in Example 45. This also has black magic solutions for q = e(a/c)
given by

iε(q)2
∑

k∈Z/cZ

(−1)kqk(k+1)/2−(1+k)mX
(k−m)/c
` X

1/2c
`∏N−1

j=0 (1− q1+k+jX
1/c
` )2(1+j+k)/c−1

, (6.69)

where X` = 1/2+(−1)`
√
−3/2. This, together with the descendant Kashaev invariant, gives

a basis of three solutions when q is a root of unity.

The important observation about the recursions associated to the descendant Kashaev in-
variant is that they seem to come as inhomogeneous equations. This follows from the shape
of the Kashaev invariant. Previously, only the q–series associated to the homogenous part
of the recursions were studied and for a long time it was wondered as to how one could
construct q–series which have asymptotics related to the formal expansion of the Kashaev
invariant. Given the Kashaev invariant satifies inhomogeneous q–difference equations so does
its formal expansion and therefore and q–series that should have asymptotics related to this
formal expansion must also satisfy an inhomogeneous recursion. For the example of 41, this
led to the function

G(m; q) =

∞∑
k=0

(−1)k
qk(k+1)/2+km

(q; q)2
k

(
1

8

(
2m− 4G1(q) + 2

k∑
`=1

1 + qj

1− qj
)2
− 1

24
+

k∑
`=1

q`

(1− q`)2

)
.

(6.70)
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These types of functions can then similarly be constructed for other knots simply using the
Frobenius method applied to the q–difference equations as exploited in [70]. The main issue
here is a choice of initial condition to apply the method to. For example, for 52 there were
different choice made in [153] and [70]. The choices made in [70] lead to the asymptotics
agreeing with the Kashaev invariant, however were reached by specific example based means.
Therefore, the most natural approach is to use state integrals that factorise in a way which
includes the Kashaev invariant at rational numbers. This then provides a consistent set of
initial conditions for the basis of solutions of the q–difference equation.

6.6 Holomorphic blocks and two variable series

The Â–polynomial, the minimal q–difference equation satisfied by the coloured Jones poly-
nomial, defines a q–holonomic module. We can construct a full basis of solutions to this
equation again using the Frobenius method.

Historically, this was done for a submodule. As the A–polynomial will always contain factors
of the form (1 − `), it is expected that the Â–polynomial will always factor in this way so
that the recursion for the coloured Jones can always be made inhomogeneous. The first
examples done gave two variable series in x and q, which satisfied the homogenous part of
the inhomogeneous equation. Therefore, these solutions corresponded to some submodule.
This was done in examples in [21]. They start with expressions they refer to as block
integrals, which are similar in nature to Watson’s q–analogue of Barne’s integral for Heine’s
q–hypergeometric sum.

Example 55 (Holomorphic block for 41). The two holomorphic blocks associated to 41 are
given by the series

g(0,x−1)(x; q) =
θ(q−1x; q)θ(x; q)(qx2; q)∞
θ(x2; q)(1− x)(q; q)∞

∞∑
k=0

(−1)k
qk(k+1)/2xk

(q; q)k(qx2; q)k
,

g(0,x)(x; q) =
θ(q−1x−1; q)θ(x−1; q)(qx−2; q)∞

θ(x−2; q)(1− x−1)(q; q)∞

∞∑
k=0

(−1)k
qk(k+1)/2x−k

(q; q)k(qx−2; q)k
.

(6.71)

It has long been noticed, and particularly pointed out by Gukov, that these series could not
constitute a full TQFT as they don’t contain information about the trivial flat connection.
The reason is that they only solve the q–difference equation associated to the homogenous
part of the inhomogeneous Â–polynomial. Recently, in [92] an additional holomorphic block
was proposed that additionally gives a solution to the inhomogeneous Â–polynomial.

An important note about the inhomogeneity is that it somewhat fixes the normalisation.
In particular, taking the solution from the Frobenius algorithm and insisting that it also
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satisfies the inhomogenous equation fixes the normalisation. Therefore, to find a natural
normalisation becomes a simpler problem if the coloured Jones polynomial satisfies an inho-
mogenous equation. However, by manipulating the series coming from the coloured Jones
polynomial itself, Gukov and Manolescu give rise to method of construction of the initial
conditions. This provides a method to compute the final missing holomorphic block.

Example 56 (Two–variable series for 41). In [153, 70], the two variable series for 41 was
given a q–hypergeometric formula that gave rise the numerically computed series of Gukov
and Manolescu. This was given using the notation there as

Ξ41(x; q) = (x1/2 − x−1/2)
∞∑
k=0

(−1)k
qk(k+1)/2

(x; q)k+1(x−1; q)k+1

=
∞∑

k,j,`=0

(xk+j+`+1/2 − xk+j+`+3/2)

(
k + j

j

)
q

(
k + `

`

)
q−1

(6.72)

and so

F41(x; q) =
1

2

∞∑
k,j,`=0

(xk+j+`+1/2 − xk+j+`+3/2 − x−k−j−`−1/2 + x−k−j−`−3/2)

×
(
k + j

j

)
q

(
k + `

`

)
q−1

.

(6.73)

The residues of all three holomorphic blocks can be used to get the series g,G,G. This was
explained in [69, 83].

6.7 Dualities for modules associated to simple knots
We close this section noting some dualities associated to some simple knots. These compu-
tations for 41 appeared in [82].

Proposition 8 (Duality of homogeneous part of descendant Kashaev invariant of 41). The
q–difference module M associated to the q–difference equation

qm−1J0,m−1(q) + (1− 2qm)J0,m(q) + qm+1J0,m+1(q) = 0 . (6.74)

satisfies
M ∼= M∧ ∼= M∨ . (6.75)

Proof. The companion matrix of the q–difference equation is

A(t, q) =

(
0 1
−q−2 2q−1 − q−2t−1

)
(6.76)
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Then take

P∧(t, q) =

(
1 0

2q−1 − t−1q−1 −q−2

)
, P∨(t, q) =

(
0 −q−1t−2

q−1t−2 0

)
. (6.77)

The extra symmetry with M ∼= M∧ comes from the fact the 41 knot is amphichiral. This
symmetry does not hold for the extension of the module to the inhomogeneous version.

Proposition 9. The q–difference moduleM∨ associated to equation (6.68) is not isomorphic
to M∧.

Proof. The companion matrices of M∧ and M∨ are given by

A∧(t, q) =

 1 0 0
q−1t−1 2q−1 − t−1q−1 −q−2

0 1 0

 , A∨(t, q) =

1 t−1 0
0 2q − t−1 1
0 −q2 0

 . (6.78)

If there was an isomorphism there would exist P (t, q) ∈ GL3(Q(t, q)) such that

P (qt, q)A∨(t, q) = A∧(t, q)P (t, q) . (6.79)

It follows that
P1,1(qt, q) = P1,1(t, q), P1,2(qt, q) = P1,3(t, q), (6.80)

which then implies

tP1,2(t, q) + (1− 2tq)P1,2(qt, q) + q2tP1,2(q2t, q) = P1,1(qt, q). (6.81)

Since P1,1 ∈ Q(t, q) satisfies (6.80), it is independent of t, i.e., P1,1(t, q) = P1,1(q). Therefore,
P1,2 would be a P1,1(q) multiple of a Q(t, q)-valued solution to Equation (6.68). The only
such solution is zero, thus P1,1 = P1,2 = 0 which, together with (6.80) gives also P1,3 = 0,
which violates the fact that P is invertible.

6.8 The WRT module and Ẑ series
Until this work it was not clear how to associate a good q–difference equation to a closed
3–manifold. With this work it is still not clear, however, in Theorem 1 we saw that to a
closed three–manifold presented by a link diagram, there is a canonical system of q–difference
equations, which is q–Weyl finite. Moreover, we saw that the span of these functions from
roots of unity is an invariant of the three–manifold. This then begs the question as to
whether a basis of solutions to a q–difference equation associated to a given presentation of
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the closed three–manifold gives rise to invariants. This could then lead to q–series invariants
similar to holomorphic blocks.

Using their two variable series associated to knots [92], Gukov and Manolescu give a conjec-
tural surgery formula that can be used to construct q–series that give conjectural invariants
of closed three–manifolds. These q–series associated to closed 3–manifolds are referred to as
Ẑ–series. These series were computed originally for non–hyperbolic manifolds [118, 99] and
for hyperbolic manifolds for the first time in [92]. The definition of the surgery formula is
via a Laplace transform analogous to that of [22]. The Laplace transform is defined as the
map such that

L(a)
p/r : xuqv 7→

{
q−u

2r/p+v if ru− a ∈ pZ ,
0 otherwise.

(6.82)

Then taking their two variable series FK(x; q), for a knot K they take, assuming it is con-
vergent,

ẐK(p,r),a(q) = L(a)
p/r

[
(x1/2r − x−1/2r)FK(x; q)

]
, (6.83)

where a indexes spin structures on the manifold. Presumably, if one could give a proof
of the invariance of these series on the underlying manifold, then one could similarly prove
invariance of the span of q–series constructed using these surgery formulae in a similar way to
Theorem 1. It would then be natural to expect with the right definition, these q–series could
give rise to a solution of the q–difference equations associated to the particular presentation
of the closed three–manifold. Indeed, we will see this kind of behaviour in an example.

6.9 WRT invariant and Ẑ for 41(1, 2)

From Example 16 the WRT invariant normalised by a factor of (1− q) of 41(−1, 2) is given
as an element of Habiro ring by

X(q) =
∑

0≤`≤k

αk,`(q) =
∑

0≤`≤k

(−1)kq−
1
2
k(k+1)+`(`+1) (q; q)2k+1

(q; q)`(q; q)k−`
(6.84)

where, as usual, for n ≥ 0 we have (x; q)n = (1−x)(1− qx) . . . (1− qn−1x). This formula will
be our starting point. As this is an element of the Habiro ring, we can formally evaluate at
q = eh where

X(eh) = −h− 25

2
h2 − 1621

6
h3 − 195601

24
h4 − 37907101

120
h5 + . . . (6.85)

Using this normalisation of the WRT invariant, which matches some of the conventions used
in [118], we note that

X(1) = 0 . (6.86)
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This is of absolutely fundamental importance for relating the Witten and Chen–Yang con-
jectures on the asymptotics of WRT invariants.

The q–hypergeometric expression (6.84) has a natural q–holonomic module associated to it
generated by

Xm,n(q) =
∑

0≤`≤k

αk,`(q)q
mk+n` =

∑
0≤`≤k

(−1)kq−
1
2
k(k+1)+`(`+1)+mk+n` (q; q)2k+1

(q; q)`(q; q)k−`
. (6.87)

A few values at q = eh are given by

X1,0(eh) = −h− 25

2
h2 − 1693

6
h3 + . . . X0,1(eh) = −h− 25

2
h2 − 1657

6
h3 + . . .

X2,0(eh) = −h− 25

2
h2 − 1765

6
h3 + . . . X0,2(eh) = −h− 25

2
h2 − 1693

6
h3 + . . .

X1,1(eh) = −h− 25

2
h2 − 1729

6
h3 + . . . X2,−1(eh) = −h− 25

2
h2 − 1729

6
h3 + . . .

(6.88)

Notice that

(1− qk+1−`)αk+1,`(q) = −q−k−1(1− q2k+2)(1− q2k+3)αk,`(q)

(1− q`+1)αk,`+1(q) = q2`+2(1− qk−`)αk,`(q)
(6.89)

and so summing both sides and tracking boundary terms we see that

Xm+1,n(q)−Xm+2,n−1(q) = −qmXm,n(q) + (qm+2 + qm+3)Xm+2,n(q)− qm+5Xm+4,n(q) ,

Xm,n(q)−Xm,n+1(q) = qn+2Xm,n+2(q)− qn+2Xm+1,n+1(q) .
(6.90)

Using Equations (6.90) it can be shown that

q2m+2Xm,n(q) + (qm+1 + qm+2)Xm+1,n(q)

+(−q2m+4 − q2m+5 − q2m+6 − q2m+7 − qm+2 + 1)Xm+2,n(q)

+(qn+m+3 − qm+3 − 2qm+4 − qm+5 − 1)Xm+3,n(q)

+(q2m+7 + q2m+8 + 2q2m+9 + q2m+10 + q2m+11 + qm+4 + qm+5)Xm+4,n(q)

+(−qn+m+5 − qn+m+6qm+6 + qm+7)Xm+5,n(q)

+(−q2m+11 − q2m+12 − q2m+13 − q2m+14 − qm+7)Xm+6,n(q)

+qn+m+8Xm+7,n(q) + q2m+16Xm+8,n(q) = 0 .

(6.91)

This has Newton polygon depicted in Figure 6.2. Taking the classical limit of the above
equation give a polynomial equation

z8 + z7 − 5z6 + 8z4 − 4z3 + 4z2 + 2z + 1

= (z − 1)(z7 + 2z6 − 3z5 − 3z4 + 5z3 + z2 − 3z − 1) = 0 .
(6.92)
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Figure 6.2: The Newton polygon of the q–difference equation satisfied by the family extending
the WRT invariant of 41(1, 2).

The field defined by the degree 7 polynomial is of course the trace field of M . This factori-
sation could suggest a refinement of this equation. One can in fact show that

q2m+2Xm,n(q) + (q2m+4 + qm+1 + qm+2)Xm+1,n(q)

+(−q2m+7 − q2m+5 − q2m+4 + qm+3 + 1)Xm+2,n(q)

+(−q2m+9 − q2m+7 − q2m+6 + qm+n+3 − qm+5 − qm+4 − qm+3)Xm+3,n(q)

+(q2m+10 + q2m+9 + q2m+7 + qm+n+4 − qm+6)Xm+4,n(q)

+(q2m+12 + q2m+11 + q2m+9 − qm+n+6 + qm+6)Xm+5,n(q)

+(−q2m+12 − qm+n+7)Xm+6,n(q)− q2m+14Xm+7,n(q) = (1− q) .

(6.93)

There is a natural q–series that pairs with X(q). In particular, consider α from Equa-
tion (6.84) as a function

α : Z2 → Q(q) s.t. αk,`(q) =

{
(−1)kq−

1
2
k(k+1)+`(`+1) (q;q)2k+1

(q;q)`(q;q)k−`
if 0 ≤ ` ≤ k

0 otherwise
. (6.94)

Equations (6.89) still hold on α with this extended domain. Moreover, Equations (6.89)
completely determine the module. Therefore it is natural to ask whether there is another
solution to Equations (6.89). Indeed, there is another solution given by

β : Z2 → Q(q) s.t. βk,`(q) =

{
(−1)k+` q

1
2 3k(k+1)+ 1

2 `(`+1)+k+1(q;q)−`−1

(q;q)−2k−2(q;q)k−`
if ` ≤ k ≤ −1

0 otherwise
.

(6.95)
We have

β−k−1,−`−1(q) = (−1)k+`q
1
2

3k(k+1)+ 1
2
`(`+1)−k (q; q)`

(q; q)2k(q; q)`−k
. (6.96)
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We see that the sum of these terms is convergent when |q| < 1, Indeed we find that∑
k,`∈Z

βk,`(q) =
∑

0≤k≤`

(−1)k+`q
1
2

3k(k+1)+ 1
2
`(`+1)−k (q; q)`

(q; q)2k(q; q)`−k

= 1− q + 2q3 − 2q6 + q9 + 3q10 + q11 − q14 − 3q15 + . . . .

(6.97)

We will define more generally

Zm,n(q) =
∑
k,`∈Z

βk,`(q)q
mk+n`

=
∑

0≤k≤`

(−1)k+`q
1
2

3k(k+1)+ 1
2
`(`+1)−(m+1)k−m−n`−n (q; q)`

(q; q)2k(q; q)`−k
.

(6.98)

Remarkably, the series Z0,0(q) has previously appeared in the literature and is, up to a factor
of −q1/2, the so called Ẑ series associated to 41(−1, 2) [92]. We can use a formula for the
two variable series [153, 70] to prove the equality. Indeed, following the notation of [92, 153]
we have

Ξ41(x; q) = (x1/2 − x−1/2)
∞∑
k=0

(−1)k
qk(k+1)/2

(x; q)k+1(x−1; q)k+1

= (x−1/2 − x1/2)
∞∑
k=0

xk+1

(x; q)k+1(x; q−1)k+1

= (x−1/2 − x1/2)
∞∑

k,j,`=0

xk+j+`+1

(
k + j

j

)
q

(
k + `

`

)
q−1

=
∞∑

k,j,`=0

(xk+j+`+1/2 − xk+j+`+3/2)

(
k + j

j

)
q

(
k + `

`

)
q−1

(6.99)

and so

F41(x; q) =
1

2

∞∑
k,j,`=0

(xk+j+`+1/2 − xk+j+`+3/2 − x−k−j−`−1/2 + x−k−j−`−3/2)

×
(
k + j

j

)
q

(
k + `

`

)
q−1

.

(6.100)

Then using the surgery formula in [92]

Ẑ(q) = q3/8

∞∑
k,j,`=0

(q2(k+j+`+3/4)2 − q2(k+j+`+7/4)2 − q2(k+j+`+1/4)2

+ q2(k+j+`+5/4)2

)

×
(
k + j

j

)
q

(
k + `

`

)
q−1

= −q1/2(1− q + 2q3 − 2q6 + q9 + 3q10 + q11 − q14 − 3q15 + . . . ) .

(6.101)
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Proposition 10. Let

Ẑm(q) = q3/8

∞∑
k,j,`=0

(
q2(k+j+`+3/4)2 − q2(k+j+`+7/4)2 − q2(k+j+`+1/4)2

+ q2(k+j+`+5/4)2)
×
(
k + j

j

)
q

(
k + `

`

)
q−1

q−mk−m .

(6.102)

We have the following identity

Ẑm(q) = −q1/2Zm,0(q) . (6.103)

In particular,
Ẑ(q) = −q1/2Z0,0(q) . (6.104)

Proof. One can show using holonomic function techniques discussed in Section 5.6 that Ẑm
satisfies the q–difference Equation (6.91) with n = 0. Therefore, as both are power series
in q−m and the q–difference equations are second order in qm, if the coefficients of q−m and
q−2m agree this proves the result. The first of these equalities is given by

−q−1/8

∞∑
j,`=0

(q2(j+`+3/4)2 − q2(j+`+7/4)2 − q2(−j−`−1/4)2

+ q2(−j−`−5/4)2

)

=
∞∑
j=0

(−1)jqj(j+1)/2 ,

(6.105)

which can be proved by direct computation and similarly for the second.

6.10 Dualities for modules associated to 41(1, 2)

Then for the companion matrix

A(x, q)

=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1
q12

q3x+q+1
q13x

(−q7−q5−q4)x2+q3x+1
q14x2

(−q5−q3−q2)x−q−1
q10x

(q6+q5+q3)x−q2+1
q10x

q3+q2+1
q5

−q5x−1
q7x


(6.106)
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we have
Zm+1(q) = A(qm, q)Zm(q) . (6.107)

This module is self dual in the sense of [82], so that M ∼= M∧∨. In particular, we have a
gauge transformation P (x; q) whose columns respectfully are given



x4q10(2q4+4q3+6q2+4q+2)+2x3q9+x2q3(2q6+4q5+4q4+6q3+4q2+4q+2)+2)

x7q21

−2x4q10+x2q3(−2q4−4q3−4q2−4q−2)−2

x6q15

x2q3(2q2+4q+2)+2

x5q10

−2x2q3−2

x4q6
2

x3q3
−2

x2q
0


,



−2x4q14+x2q5(−2q4−4q3−4q2−4q−2)−2

x6q21

x2q5(2q2+4q+2)+2

x5q15

−2x2q5−2

x4q10
2

x3q6
−2

x2q3

0
−2

x2q


,



(x2q7(2q2+4q+2)+2

x5q20

−2x2q7−2

x4q14
2

x3q9
−2

x2q5

0
−2

x2q3
2

x3q3


,



−2x2q9−2

x4q18
2

x3q12
−2

x2q7

0
−2

x2q5
2

x3q6

(−2x2q3−2

x4q6


,



2
x3q15
−2

x2q9

0
−2

x2q7
2

x3q9

(−2x2q5−2

x4q10

(x2q3(2q2+4q+2)+2xq2+2

x5q10


,



−2

x2q11

0
−2

x2q9
2

x3q12

−2x2q7−2

x4q14

x2q5(2q2+4q+2)+2xq3+2

x5q15

−2x4q10+x2q3(−2q4−4q3−4q2−4q−2)+xq2(−2q−2)−2

x6q15


,



0
−2

x2q11
2

x3q15

−2x2q9−2

x4q18

x2q7(2q2+4q+2)+2xq4+2

x5q20

−2x4q14+x2q5(−2q4−4q3−4q2−4q−2)+xq3(−2q−2)−2

x6q21

x4q10(2q4+4q3+6q2+4q+2)+x3q7(2q4+2q3+2q2+2q+2)+x2q3(2q6+4q5+4q4+6q3+4q2+4q+2)+xq2(2q2+2q+2)+2

x7q21


(6.108)

which satisfy the following equations

A(x, q) = P (qx, q)A(q7x, q−1)TP (x, q)−1 . (6.109)

This duality can be used to give rise to quadratic relations between the q–series of equa-
tion 8.154 and equation ?? that is most conveniently given in matrix form.

Lemma 18 (Quadratic relations). We have the following identity for Z from equations (8.150)
and (8.152):

Zm(q)Z−m−6(q−1)T = P (qm, q) . (6.110)

Proof. From Equation (6.109) we see that

Z−m−6(q−1)TP (qm, q)−1Zm(q) (6.111)

is independent of m. Then we find that

lim
m→−∞

Z−m−6(q−1)TP (qm, q)−1Zm(q) = Id7×7 . (6.112)
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An additional identity is needed. This follows from the usual method of checking the differ-
ence equations and boundary conditions at m = ±∞, which in this case vanish.

Proposition 11. The q–series Z(2)
m (q) is defined for q 6= 1 and for |q| > 1, we have

Z(2)
m (q) = 0 . (6.113)





Part IV

Modularity

269





Chapter 7

From modular to mock

Classical modular forms originated as θ–functions. They were then implicit in the studies
of Ramanujan who formulated many beautiful conjectures and illustrated many important
structural properties in examples. These properties were then understood by Hecke. Their
theory became most clearly described as certain functions with large and interesting sym-
metries related to arithmetic objects. These symmetries are strict enough that the spaces
of functions that are invariant under their action are finite dimensional. They appear in
almost all areas of modern mathematics and their powerful properties have led to amazing
developments in algebraic geometry, mathematical physics, and number theory. This section
will give some extremely elementary aspects of the theory discussing the bare minimum for
what we will need. For a more detailed introduction see for Example [32, 176]. Next we
move toe Jacobi forms. The theory of Jacobi forms was introduced in [56]. This combines
elliptic and modular forms and captures many interesting and important examples of classi-
cal functions. The q–difference equations these satisfy are trivial and we will see that taking
more interesting examples leads to quantum modular forms. As a stepping stone we consider
mock modular forms

One of the most mysterious open problems over the last century was the question: what are
mock θ–functions? In his famous last letter to Hardy before his untimely death, Ramanujan
gave a list of some simple q–hypergeometric functions that have properties similar to those
of modular forms. In particular, their asymptotics as q approaches a root of unity looks like
a modular form at leading order however, at subleading order there is a different behaviour.
For Example [207], consider the function

f(q) =
∞∑
k=0

qk
2

(−q; q)k
, (7.1)

which Ramanujan would refer to as an order 3 mock modular form. Then as τ → i∞ along
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iR, one can numerically observe that for example

f
(
e
( τ

2τ + 1

))
∼ e

(
− 1

60

(
τ +

1

2

))√
τ +

1

2

(
− 15

8
− 5

8

√
5
)− 1

4
e
(
− 1

60

1

2(2τ + 1)

)
+ 2 + 4

−2πi

2(2τ + 1)
+ 36

( −2πi

2(2τ + 1)

)2

+
1640

3

( −2πi

2(2τ + 1)

)3

+ · · · .
(7.2)

For example, see Code 27. The leading order would be expected for a modular form, however,
the subleading terms would normally involve an integer multiple of the initial series with an
integer power of e(τ). This is indeed a special property for a function to have however with
these examples, Ramanujan gave no definition and trying to understand how he thought
about them seems unfortunately impossible.

Regardless, these functions were then studied by Watson [193], who proved many of the
q–series identities between them and related them to the Appell–Lerch sums. These were
then studied by Zwegers in his thesis who related them to real analytic modular forms. Soon
after, Bringmann and Ono used these ideas to prove various open problems in combinatorics.
For an overview, see [211, 207, 31].

We close this introduction with a small remark on notation. One of the beautful develop-
ments of the theory was that special functions in a variable q should be replaced by functions
in τ where q = e(τ). However, we will just assume this as standard and often write

f(q) = f(τ) . (7.3)

Moreover, we will always take
qa/c = e(aτ/c) . (7.4)

7.1 Modular group and Eisenstein series
The basic example of a group of symmetries is the group PSL2(Z) often referred to as the
modular group. This group has a finite presentation

Γ1 = PSL2(Z) = 〈S, T : S2 = 1, (ST )3 = 1〉 , (7.5)

where the generators can be given explicitly as

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
. (7.6)

The modular group is of course the matrix group SL2(Z) modulo its centre which is just
±1. SL2(Z) is also generated by the above matrices and has finite presentation where the
1s in the relations are replaced by −1. Importantly, the modular group is a subgroup of
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SL2(R) and SL2(C) and therefore has a natural action on h via Mobius transformations. In
particular, for γ = [a, b; c, d] ∈ SL2(Z) we have

γ · τ =
aτ + b

cτ + d
. (7.7)

This is indeed an left action as for γ′ = [a′, b′; c′, d′] ∈ SL2(Z)

γ′ · γ · τ =
a′ aτ+b
cτ+d

+ b′

c′ aτ+b
cτ+d

+ d′
=

(a′a+ b′c)τ + (a′b+ b′d)

(c′a+ d′c)τ + (c′b+ d′d)
= (γ′γ) · τ . (7.8)

This action can be used to define an action of the space of holomorphic functions on h. We
define the |k action as follows

f |kγ(τ) = (cτ + d)−kf
(aτ + b

cτ + d

)
. (7.9)

This is indeed a right action as

(f |kγ|kγ′)(τ) = (c′τ + d′)−k(f |kγ)
(a′τ + b′

c′τ + d′

)
=
(
c
a′τ + b′

c′τ + d′
+ d
)−k

(c′τ + d′)−kf

(
aa
′τ+b′

c′τ+d′
+ b

ca
′τ+b′

c′τ+d′
+ d

)
= ((ca′ + dc′)τ + (cb′ + dd′))−kf

((aa′ + bc′)τ + (ab′ + bd′)

(ca′ + dc′)τ + (cb′ + dd′)

)
= (f |kγ · γ′)(τ) .

(7.10)

With this one can define modular forms of weight k.

Definition 17 (Modular form). A modular form of weight k for the group SL2(Z) is a
holomorphic function on the upper half plane such that it is fixed under the |k action, so in
particular

f |kγ = f , (7.11)
and such that its Fourier series ∑

n

cnq
n (7.12)

has cn = 0 for n < 0.

As the full modular group in generated by T and S it is enough to have the equations

f(τ + 1) = f(τ) and f(−1/τ) = τ kf(τ) . (7.13)

One can of course consider subgroups of SL2(Z) and this important for many interesting
applications. For this thesis we will mainly restrict our attention to the full modular group.
The first statement that one learns about modular forms is that to be one is a strong
condition.
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Theorem A–35. [32, Cor. 1] The vector space of weight k modular forms is finite dimen-
sional.

Some of the simplest modular forms one encounters are the Eisenstein series. These are
defined [202] for the full modular group as

Gn(τ) =
∑
k,`∈Z

k>0 or k=0,`>0

1

(mτ + `)n
. (7.14)

There functions clearly satisfy the equation

Gn(τ + 1) = Gn(τ) (7.15)

and therefore have a Fouier series. This Fourier series is given as

Gn(q) = −Bn

2n
+
∞∑
k=1

∑
0<d|k

dn−1qk = −Bn

2n
+
∞∑
k=1

kn−1 qk

1− qk . (7.16)

For example, we have

G1(q) = −1

4
+ q + 2q2 + 2q3 + 3q4 + 2q5 + 4q6 + 2q7 + 4q8 + 3q9 + · · · ,

G2(q) = − 1

24
+ q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + 15q8 + 13q9 + · · · ,

G3(q) = q + 5q2 + 10q3 + 21q4 + 26q5 + 50q6 + 50q7 + 85q8 + 91q9 + · · · .

(7.17)

For even n these functions are modular forms of weight n so that for n ∈ Z

G2n(τ + 1) = G2n(τ) ,

G2n(−1/τ) = τ 2nG2n(τ) .
(7.18)

For the even Eisenstein series we can define

E2k(q) =
2

ζ(1− 2k)
G2k(q) = 1 +O(q) . (7.19)

The odd Eisenstein series will be additive quantum modular forms discussed later. One can
naturally define Eisenstein series on the lower half plane via the formal manipulation

Gn(q−1) =
1

2
ζ(1− n) +

∞∑
k=1

kn−1 q−k

1− q−k

=
1

2
ζ(1− n)−

∞∑
k=1

kn−1 −
∞∑
k=1

kn−1 qk

1− qk = −Gn(q) .

(7.20)

We close this section with a little computational result. This allows the computation of the
Eisenstein series of order O(qk

2/2). This uses the following lemma.
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Lemma 19. [73, 85] We have

(qeε; q)∞
(q; q)∞

1

(qeε; q)m
=

1

(q; q)m

√ −ε
1− exp(ε)

× exp

(
−
∞∑
`=1

(
G`(q)−

m∑
n=1

Li1−`(q
n)

)
ε`

`!

)
,

(q−1eε; q−1)∞
(q−1; q−1)∞

1

(q−1eε; q−1)m
=

1

(q−1; q−1)m

−1

ε

√ −ε
1− exp(ε)

× exp

(
−
∞∑
`=1

(
G`(q

−1)−
m∑
n=1

Li1−`(q
−n)

)
ε`

`!

)
.

(7.21)

Corollary 8. We have

(qeε; q)∞
(q; q)∞

= exp
(
−

∞∑
n,k=1

kn−1 qk

1− qk
εn

n!

)
. (7.22)

Expanding in the formal variable ε
∞∑
`=1

(G`(q)− ζ(1− n)/2)
ε`

`!
= − log

( 1

(q; q)∞

∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)k
ekε
)
. (7.23)

For example, this corollary gives the formulae

G1(q) = −1

4
− 1

(q; q)∞

∞∑
k=0

(−1)kk
qk(k+1)/2

(q; q)k
,

G2(q) = − 1

24
− 2

(q; q)∞

∞∑
k=0

(−1)k
k2

2!

qk(k+1)/2

(q; q)k
+

1

(q; q)2
∞

( ∞∑
k=0

(−1)kk
qk(k+1)/2

(q; q)k

)2

,

(7.24)

where of course we can use either

(q; q)∞ =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)k
=
∑
k∈Z

(−1)kqk(3k−1)/2 , (7.25)

for efficient computations.

Remark 22. The main use of these formulae is evaluating odd Eisenstein series near q = 1.
Of course if one has an even Eisenstein series the most efficient way to do this is with the
modularity.

Remark 23. The Eisenstein series arise when we find solutions to certain q–difference
equations associated to roots of the indicial polynomial of edges of the Newton polygon with
multiplicities. They similarly arise when factorising state integrals.
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The Eisenstein series of wieght 4 and 6 turn out to determine all other modular forms. In
particular, the multiplication of two modular forms is again a modular form with weight the
sum of the two previous weights. In this way, we can make the algebra of all modular forms
into a graded algebra.

Theorem A–36. The algebra of modular forms in isomorphic to the polynomial ring gen-
erated by the Eisenstein series of weight 4 and 6, that is

C[E4, E6] . (7.26)

The final important property of Eisenstein series is the important transformation property
of the weight 2 Eisenstein series. This function would be modular with an almost analogous
proof however it lacks certain convergence properties that would be required for the proof.
However, it satisfies the following transformation

G2(q̃) = τ 2G2(q) +
iτ

4π
. (7.27)

There is a space of functions that extend modular forms called quasi modular forms and this
is gives an algebra isomoprhic to the polynomial algebra

C[E2, E4, E6] . (7.28)

The functional equation for G2 will be important when we discuss Jacobi forms.

7.2 The Dedekind η–function and θ–functions
After the Eisenstein series there is another modular form that one will encounter. Indeed,
it is a major player in this thesis. This is the Dedekind η function. This is defined as

η(q) = q1/24(q; q)∞ . (7.29)

This is a modular form of weight 1/2. This cannot be a usual modular form as |1/2 is not a
well defined action. Indeed, we need to twist this action. Everything is determined by the
equations

η(τ + 1) = e(1/24)η(τ) and η(−1/τ) = e(−1/8)
√
τ η(τ) . (7.30)

More generally, we have

η
(aτ + b

cτ + d

)
= ε(a, b, c, d)

√
cτ + d η(τ) (7.31)

where

ε(a, b, c, d) =

{
e(bd/24) if c = 0 ,√

−ic
|c|
∏|c|−1

`=1

(
1− e

(
`a
c

)) 1
2
− `
|c|
e
(
a+d
24c

)
if c 6= 0 .

(7.32)
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This ε(a, b, c, d)
√
cτ + d is called an automorphy factor and ε a multiplier system. See def-

inition 18. This formula for the multiplier system can be derived from the asymptotics of
the Pochhammer symbol given in equation (4.93). However, it is often given in terms of the
Dedekind sum which for 0 ≤ c is given by

ε(a, b, c, d) =

{
e(b/24) if c = 0, d = 1 ,

e
(
a+d
24c
−∑c−1

n=1
n
c

(
dn
c
−
⌊
dn
c

⌋
− 1

2

)
− 1

4

)
if c > 0 .

(7.33)

This is numerically verified in Code 25. From the equations (7.30) we see that

∆(q) = η(q)24 = q
∞∏
j=1

(1− qj)24 =
∞∑
k=1

τ(k)qk . (7.34)

gives a modular form of weight 12. This is Ramanujan’s ∆–function and the Fourier co-
efficients are his τ–function of which Ramanujan discovered many fascinating properties.
Weight 12 is important as it is the first weight with space of functions of dimension greater
than 1. Indeed, this is the first example of a cusp form, which is roughly a modular form
which vanishes when q = 0.

The most classical example of a modular form is given by the θ–functions. These were
studied by Jacobi and used by Riemann to prove the functional equation of the ζ–function.
The basic example is

ϑ00(q) =
∑
k∈Z

qk
2/2 . (7.35)

This satisfies the functional equations

ϑ00(τ + 2) = ϑ00(τ + 2) and ϑ00(−1/τ) = e(−1/8)
√
τϑ00(τ) . (7.36)

Therefore this is invariant under the group generated by T 2 and S. Hence, this subgroup is
often referred to as the θ–subgroup.

To prove the modularity of each of these functions the easiest method is to apply Poisson
summation. Indeed the first transform satisfied by ϑ00 simply follows from the Fourier
expansion in q1/2. The second follows noting that by Poisson summation given in Theorem 26
that

ϑ00(−1/τ) =
∑
k∈Z

e(−k2/2τ) =
∑
`∈Z

∫ ∞
−∞

e(−x2/2τ + `x) dx

=
∑
`∈Z

√
τ

i
e(`2/2τ) = e(−1/8)

√
τϑ00(τ) .

(7.37)
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7.3 Vector and matrix valued modular forms
The previous example of the θ function ϑ00 leads to a natural question: what properties does
the function

ϑ00(τ + 1) =
∑
k∈Z

(−1)kqk
2/2 (7.38)

satisfy? For the full modular group we can in fact lift this kind of modular form on a
subgroup to the full group. Let’s continue with this example. We can define an additional
three functions

ϑ01(q) =
∑
k∈Z

(−1)kqk
2/2, ϑ10(q) = q1/4

∑
k∈Z

qk(k+1)/2,

and ϑ11(q) = iq1/4
∑
k∈Z

(−1)kqk(k+1)/2 .
(7.39)

These functions then satisfy the transformation

ϑ01(τ + 1) = ϑ00(τ) , ϑ01(−1/τ) = e(−1/8)
√
τϑ00(τ) ,

ϑ10(τ + 1) = ϑ10(τ) , ϑ10(−1/τ) = e(−1/8)
√
τϑ01(τ) ,

ϑ11(τ + 1) = ϑ11(τ) , ϑ11(−1/τ) = e(−3/8)
√
τϑ00(τ) .

(7.40)

Along with ϑ00(τ + 1) = ϑ01(τ) we see that we can form a vector–valued function

ϑ(q) =


ϑ00(τ)
ϑ01(τ)
ϑ10(τ)
ϑ11(τ)

 , (7.41)

which satisfies

ϑ(τ + 1) =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

ϑ(τ) , ϑ(−1/τ) = e(−1/8)
√
τ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i

ϑ(τ) . (7.42)

This kind of example can be formalised using matrix valued automorphy factors.

Definition 18. We call j : h× Γ→ GLN(C) an automorphy factor of rank N and weight k
if

j(τ ; γγ′) = j
(aτ + b

cτ + d
; γ
)
j(τ ; γ′) , (7.43)

and for γ = [a, b; c, d] for some k ∈ R

j(τ ; γ) = (cτ + d)kν(γ) (7.44)

where | det(ν(γ))| = 1. ν is called a multiplier system.
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Using this we can define modular forms with respect to automorphy factors.

Definition 19. A holomorphic function f : h → CN is a modular form with respect to the
automorphy factor j if for γ = [a, b; c, d] ∈ SL2(Z)

f
(aτ + b

cτ + d

)
= j(τ ; γ)f(τ) . (7.45)

We can define an action on functions similarly to what we did form modular forms |j with
respect to this automorphy factor j.

A famous and interesting example of a vector–valued modular form comes from the Rogers–
Ramanujan identities [164].

Example 57. Consider, the functions

G(q) =
∞∑
k=0

qk
2

(q; q)k
, and H(q) =

∞∑
k=0

qk
2+k

(q; q)k
. (7.46)

These satisfy the following equalities proved independently and also together by Rogers–
Ramanujan

G(q) =
1

(q; q5)∞(q4; q)∞
, and H(q) =

1

(q2; q5)∞(q3; q)∞
. (7.47)

Then taking

g(q) =

(
q−1/60G(q)
q11/60H(q)

)
, (7.48)

using the product expansions, the Jacobi triple product and modularity of the θ–function from
equation (7.68) one can show that

g(τ + 1) =

(
e(−1/60) 0

0 e(11/60)

)
g(τ) , g(−1/τ) =

2√
5

(
sin 2π

5
sin π

5

sin π
5
− sin 2π

5

)
g(τ) .

(7.49)
In this case, these two matrices associated to the generators T and S generate a representa-
tion of SL2(Z).

7.4 q–hypergeometric functions and modularity
The previous example of the Rogers–Ramanujan functions is very special and beautiful ex-
ample of a modular q–hypergeometric function. Most q–hypergeometric functions are not
modular and it is an extremely interesting question of when such a function will be modular.
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This seems like an impossible condition to quantify for a q–hypergeometric function. Re-
markably, based on computations in conformal field theory, Nahm gave a relation between
modularity and vanishing of a classes in K–theory. This can be made precise for the class
of q–hypergeometric sums known as Nahm sums∑

k∈ZN≥0

q
1
2
kTAk+bTk+c

(q; q)k1 · · · (q; q)kN
. (7.50)

To these sums and solutions

1−Xi =
N∏
j=1

X
Aij
j , (7.51)

we can associate the element of the Bloch group

ξA,i =
N∑
j=1

[X
(i)
j ] ∈ B(C)⊗Q . (7.52)

Conjecture 6 (Nahm’s conjecture). [142, 191, 206] If some ξA,i = 0, then some combina-
tion of the sums with various b and c gives a modular form.

For the Rogers–Ramanujan functions we have associated Bloch group element [206, Sec. 2.B]

[(−1±
√

5)/2] = 0 ∈ B(C)⊗Q (7.53)

and we of course have the modularity shown in Example 57. This conjecture has a natural
and surprising analogue for three–manifolds. Indeed, it was noticed in [118, 99] that false
θ–functions and mock modular forms appear for non–hyperbolic three–manifolds. This can
be formulated in a modular setting as follows.

Conjecture 7. If M is a non–hyperbolic 3–manifold, then the q–Weyl module associated to
its sl2 quantum invariants has a representation in a space of modular forms.

7.5 Elliptic functions and the Weierstrass ℘–function
Elliptic functions are meromorphic functions defined on a complex torus C/(Z + τZ) i.e.
doubly periodic functions. From Liouville’s theorem, holomorphic elliptic functions are con-
stant. Supposing that there exists a function with a simple pole leads to a contradiction as
this gives an isomorphic to the Riemann–sphere. Therefore, the first example must have two
simple poles or a double pole. This leads to the Weierstrass ℘–function. This is defined as

℘(z; τ) =
1

z2
+

∑
(n,m)∈Z2−(0,0)

( 1

(z −mτ − n)2
− 1

(mτ + n)2

)
. (7.54)
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This functions satisfies the functional equations

℘(z +mτ + n; τ) = ℘(z; τ) , (7.55)

and so is elliptic. It has Laurent series expansion at z = 0

℘(z; τ) =
1

z2
+ 2

∞∑
k=1

G2k+2(q)
(2πiz)2k

(2k)!
. (7.56)

This expansion can be used to show that for x = e(z)

℘(z; τ) =
θ′(x; q)2 − θ′′(x; q)θ(x; q)

θ(x; q)2
− 2G2(q) . (7.57)

Notice that from the functional equation for the θ–function,

θ(qx; q) = −q−1x−1θ(x; q) , (7.58)

for any set of z0,j and z∞,j such that∑
j

z0,j − z∞,j = 0 (7.59)

we find that ∏
j

θ(e(z + z0,j); q)

θ(e(z + z∞,j); q)
, (7.60)

is an elliptic function. In this way if we understand the zeros and poles of an elliptic function
then we can give an explict description. Note that this is not necessarily an easy problem
and indeed the zeros of the Weierstrass ℘–function are interesting numbers computed in [55].
This example shows us that this natural examples has an expansion in the elliptic variable
which is made up of modular forms. It is then natural to ask whether this elliptic functions
satisfies any modular properties. This is indeed the case and leads to Jacobi forms. Here we
see that for γ = [a, b; c, d] ∈ SL2(Z) we have

℘
( z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)2℘(z; τ) . (7.61)

7.6 The Jacobi group and θ–functions

The transformation property of the Weierstrass ℘–function indicates that there are natural
examples of functions that are elliptic and in some way modular. From the point of view
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of symmetries there is a clear way of how to combine these actions. This is through the
semi–direct product. In particular, we can take the Jacobi group

SL2(Z) n Z2 . (7.62)

This is the group defined to be to be the set of pairs (γ, n) for γ ∈ SL2(Z) and n ∈ Z2 with
multiplication

(γ, n) · (γ′, n′) = (γγ′, nγ′ + n′) . (7.63)

This group has a natural slash action on functions from C×h. This has an associated weight
k and index m and we define for γ = [a, b; c, d] ∈ SL2(Z) and (n1, n2) ∈ Z2

(f |k,mγ)(z; τ) = (cτ + d)−ke
(−mcz2

cτ + d

)
f
( z

cτ + d
;
aτ + b

cτ + d

)
(f |k,mn)(z; τ) = e

(
m(n2

1τ + 2n1z)
)
f(z + n1τ + n2; τ)

(7.64)

We can use this to define Jacobi forms.

Definition 20 (Jacobi form). A Jacobi form of weight k and index m is a holomorphic
function from C× h such that it is fixed under the |k,m action, so that in particular

f |k,m(γ, n) = f , (7.65)

and such that its Fourier series ∑
n,r

cn,rq
nxr (7.66)

has cn,r = 0 for n ≥ r2/4m.

Much like modular forms, being a Jacobi form is a strict condition.

Theorem A–37. [56, Thm. 1.1] The space of Jacobi forms of weight k and index m is
finite dimensional.

For example, weight k and index 0 Jacobi forms are constant in z and are therefore just
modular forms of weight k. This is quite nice, however we are almost always interested in
some more exotic examples with multiplier systems and vector–valued. These can analo-
gously be defined and often we won’t restrict ourselves as we will not often need these finite
dimensionality results. We see that the Weierstrass ℘–function is then a weight 2 and index 0
meromorphic Jacobi form and so is already a slight generalisation away from holomorphicity.

The last equation (7.64), for the action of Z2, can be viewed as a q–difference equation.
Indeed, letting x = e(z) and q = e(τ) as usual, we find that the last equation is

f(qn1x; q) = q−mn
2
1x−2mf(x; q) . (7.67)
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This is similar to the q–difference equation (5.36). Indeed, the θ–function will be the most
important basic example. If we consider the function q

1
8x

1
2 θ(x; q) and take x̃ = e(z/τ), then

from the Poisson summation formula of Theorem 26 we find

q̃
1
8 x̃

1
2 θ(x̃; q̃) =

∑
k∈Z

(−1)kq̃(k+1/2)2/2x̃k+1/2

=
∑
`∈Z

∫ ∞
−∞

e(−(ξ + 1/2)2/2τ + (ξ + 1/2)z/τ + (`+ 1/2)ξ)dξ

= e(z2/2τ)
∑
`∈Z

(−1)−`−1/2e((`+ 1/2)z)

∫ ∞
−∞

e(−ξ2/2τ + `ξ)dξ

=
√
τe
( z2

2τ
− 3

8

)
q

1
8x

1
2 θ(x; q) .

(7.68)

This modularity is why we choose this particular solution to the difference equation 5.34.
We can use this to find modularity results for some vector–valued θ–functions. In particular,
notice that for odd κ ∈ 2Z + 1

q̃
κ
8 x̃

1
2 θ(x̃; q̃κ) =

√
τ

κ
e

(
z2

2κτ
− 3

8

)
q

1
8κx

1
2κ θ(x

1
κ ; q

1
κ )

=

√
τ

κ
e

(
z2

2κτ
− 3

8

)
q

1
8κx

1
2κ

3κ−1
2∑

r=κ−1
2

(−1)rq
r(r+1)

2κ x
r
κ

∑
k∈Z

(−1)kq
κk(k+1)

2 (q
2r+1−κ

2 x)k

=

√
τ

κ
e

(
z2

2κτ
− 3

8
− κ− 1

4

) κ−1∑
r=0

(−1)rq
κ
8

+ r
2

+ r2

2κx
r
κ

+ 1
2 θ(qrx; qκ)

(7.69)

Therefore we see that

q̃
κ
8
+ s

2 x̃
1
2 θ(q̃

s
x̃; q̃

κ
) =

√
τ

κ
e

(
z2

2κτ
−

1

8
−
κ

4

)
q̃
− s

2

2κ x̃
− s
κ

κ−1∑
r=0

(−1)
r+s

e

(
sr

κ

)
q
κ
8
+ r

2
+ r

2

2κ x
r
κ

+1
2 θ(q

r
x; q

κ
) . (7.70)

Similarly, one can show that for even κ ∈ 2Z,

q̃
κ
8
+ s

2 x̃
1
2 θ(−q̃sx̃; q̃

κ
) =

√
τ

κ
e

(
z2

2κτ
−

1

8
−
κ

4

)
q̃
− s

2

2κ x̃
− s
κ

κ−1∑
r=0

(−1)
r+s

e

(
sr

κ

)
q
κ
8
+ r

2
+ r

2

2κ x
r
κ

+1
2 θ(−qrx; q

κ
) . (7.71)

Therefore, taking them vector–valued θ–function with the Vandermonde determinant

ϑκ(z; τ) =

 q
κ
8 x

1
2 θ((−1)κ+1x; qκ)

:

(−1)rq
κ
8
+ r

2
+ r

2

2κ x
r
κ

+1
2 θ((−1)κ+1qrx; qκ)

:

(−1)κ−1q
9κ2−12κ+4

8κ x
3
2
− 1
κ θ((−1)κ+1qrx; qκ)

 , Vκ =


1 1 1 . . . 1

1 e
(

1
κ

)
e
(

2
κ

)
. . . e

(
κ−1
κ

)
1 e

(
2
κ

)
e
(

4
κ

)
. . . e

(
2κ−2
κ

)
: : : . . . :

1 e
(
κ−1
κ

)
e
(

2κ−2
κ

)
. . . e

(
(κ−1)2

κ

)

 ,

(7.72)
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we find that

ϑκ(x̃; q̃) =

√
τ

κ
e

(
z2

2κτ
− 1

8
− κ

4

)
Vκ ϑκ(x; q) . (7.73)

We have the additional relations

ϑκ(z; τ + 1) = diag
(
e
(κ

8

)
, . . . , e

(κ
8

+
r

2
+
r2

2κ

)
, . . . , e

(9κ2 − 12κ+ 4

8κ

))
ϑκ(z; τ)

ϑκ(z + 1; τ) = diag
(
e
(1

2

)
, . . . , e

(1

2
+
r

κ

)
, . . . , e

(1

2
+
κ− 1

κ

))
ϑκ(z; τ)

ϑκ(z + τ ; τ) = −q− 1
2κx−

1
κ


0 1 0 · · · 0
0 0 1 · · · 0
: : : · · · :
0 0 0 · · · 1
1 0 0 · · · 0

ϑκ(z; τ)

(7.74)

We then see that this is a vector–valued Jacobi form with some matrix valued automorphy
factor.

From Jacobi forms, we can construct modular forms. One way is by taking sums over torsion
points on the elliptic curve i.e. sums of the form

N−1∑
k,`=0

f((k + τ`)/N ; τ) . (7.75)

Also, expanding as power series in the elliptic variable near 0 and taking the coefficients we
see that quasi modular forms will arise. Quasi modular forms will arise as

e
( z2

2τ

)
=

exp((2πiz)2G2(q))

exp((2πiz/τ)2G2(q̃))
. (7.76)

Therefore, if f is a Jacobi form of weight k and index m, we see that

g(z; τ) = exp(2m(2πiz)2G2(q))f(z; τ) (7.77)

satisfies

g
(z
τ

;
−1

τ

)
= τ kg(z; τ) . (7.78)

Therefore, the coefficients in the expansion of g in z around z = 0 will be modular forms
with weights depending on the power of z and k.
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7.7 Deformations of modular q–hypergeometric functions

We can view the θ–function θ(x; q) as a deformation of the θ–function ϑ00(q). Indeed, they
are related by simple functions and shifting the index of summation.

θ(z; τ) =
∑
k∈Z

e(k(k + 1)τ/2 + kz) =
∑
k∈Z

e((k + 1/2 + z/τ)2τ/2− (1/2 + z/τ)2τ/2)

= e(−(1/2 + z/τ)2τ/2)
∑

k∈Z+1/2+z/τ

e(k2τ/2) .

(7.79)
It is then natural to consider the modularity of modular q–hypergeometric functions under
a similar operation. From the point of view of Nahm’s conjecture 6, this is natural as these
deformation will not alter the original q–difference equations. While a general statement
to this affect would be involved given the still somewhat mysterious nature of modular q–
hypergeometric functions we can prove this in the basic example of the Roger–Ramanujan
functions. Taking the deformation of the Rogers–Ramanujan functions from Example 57 as
we discussed in Section 6.4 we have

G(x; q) =
(qx; q)∞
(q; q)∞

∑
k∈Z

qk
2
x2k

(qx; q)k
, and H(x; q) =

(qx; q)∞
(q; q)∞

∑
k∈Z

qk
2+kx2k+1

(qx; q)k
. (7.80)

Then let

g(x; q) =

(
q−

1
60G(x; q)

q
11
60H(x; q)

)
. (7.81)

With this we have the following result, which was seemingly known to Zwegers.

Theorem 3. The function g is a vector–valued Jacobi form of weight 0 and index 2 associated
to the representation ρ from the original Rogers–Ramanujan functions. In particular,

g(z + 1; τ) = g(z; τ)

g(z + τ ; τ) = q−1x−2g(z; τ)

g(z; τ + 1) =

(
e
(
− 1

60

)
0

0 e
(

11
60

)) g(z; τ)

g
(z
τ

;−1

τ

)
= e

(z2

τ

) 2√
5

(
sin 2π

5
sin π

5

sin π
5
− sin 2π

5

)
g(z; τ) .

(7.82)
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Proof. Firstly, notice that

(
0 1 0 0 −1
0 0 1 −1 0

)
1 1 1 1 1
1 e(1/5) e(2/5) e(3/5) e(4/5)
1 e(2/5) e(4/5) e(6/5) e(8/5)
1 e(3/5) e(6/5) e(9/5) e(12/5)
1 e(4/5) e(8/5) e(12/5) e(16/5)


=

(
e(1/5)− e(4/5) e(2/5)− e(3/5)
e(2/5)− e(3/5) −e(1/5) + e(4/5)

)(
0 1 0 0 −1
0 0 1 −1 0

)
.

(7.83)

Then, for ϑ5 from equation (7.72), letting

Θ(z; τ) =

(
0 1 0 0 −1
0 0 1 −1 0

)
ϑ5(z; τ) , (7.84)

from the modularity of ϑ5 and equation (7.83) we find that

e

(
z2

10τ

)
e

(
−3

8

)√
5τΘ(z; τ) =

(
e(1/5)− e(4/5) e(2/5)− e(3/5)
e(2/5)− e(3/5) −e(1/5) + e(4/5)

)
Θ

(
z

τ
;−1

τ

)
.

(7.85)
Then notice that

F0(x; q) =
∑
k

(−1)kqk(5k−1)/2x5k(1 + qkx) = −q2x5θ(q2x5; q5)− q3x6θ(q3x5; q5) (7.86)

and

F1(x; q) =
∑
k

(−1)kqk(5k+3)/2x5k+2(1−q2k+1x2) = −q4x7θ(q4x5; q5)−qx4θ(qx5; q5). (7.87)

Therefore, using the deformed Rogers–Ramnaujan identities of Theorem 2 and the modu-
larity of θ and η, we find that

g
(z
τ

;−1

τ

)
= e

(z2

τ

) 2√
5

(
sin 2π

5
sin π

5

sin π
5
− sin 2π

5

)
g(z; τ) . (7.88)

The other identities for the generators of the Jacobi group can be checked directly.

Another natural place that a kind of deformation of q–hypergeometric functions appears
is through q–Borel resummation discussed in Section 5.5. This leads to additional elliptic
variables when the q–series should be divergent. As a somewhat trivial example consider the
sum ∑

k∈Z

(−1)kq−k(k+1)/2xk . (7.89)
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This is of course divergent when |q| < 1. We can of course use q–Borel resummation of the
series

∞∑
k=0

(−1)kq−k(k+1)/2xk , and
−1∑

k=−∞

(−1)kq−k(k+1)/2xk . (7.90)

In this example, these give exactly the Appell–Lerch sums of equation (5.84) studied in [211]
with the difference of a sign between the positive and negative sums. Therefore, if λ and µ
represent the elliptic variables coming from the q–Laplace transforms, their sum from [82]
or Lemma 12 is given by

(q; q)3
∞θ(λ

−1µ; q)θ(λ−1µ−1x−1; q)θ(q−1x; q)

θ(λ−1; q)θ(µ; q)θ(λ−1x; q)θ(µ−1x; q)

1

θ(q−1x; q)
. (7.91)

If one multiplies by θ(q−1x; q) then this is a meromorphic Jacobi form of weight 1 and index 0
in three elliptic variables. Therefore, this example of a divergent q–series that we expect to
be modular, indeed turns out to be modular when q–Borel resummed.

Remark 24. This would then give a new fully modular approach to indefinite and negative
definite θ–functions. However, the combinatorial interpretation of these θ–functions at the
moment seems less clear without any further investigation.

7.8 Appell–Lerch sums
Recall the Appell–Lerch sum of equation (5.84) given by

L(x, λ, q) =
1

θ(λ; q)

∑
k∈Z

(−1)k
qk(k+1)/2λk

1− qkλx . (7.92)

This is elliptic in λ and satisfies the inhomogeneous q–difference equation in x,

L(qx, λ, q) + xL(x, λ, q) =
1

θ(λ; q)

∑
k∈Z

(−1)k−1 q
k(k−1)/2λk−1(1− qkλx)

1− qkλx = 1 . (7.93)

This q–difference equation is an inhomogenous version of the q–difference equation satisfied
by

1

θ(q−1x; q)
. (7.94)

Therefore, the Appell–Lerch sum lives in a degree one extension of the module associated
to the θ–function. To see how this related to Ramanujan’s description of mock θ–functions,
consider the expansion

L(1, ε, q) =
−1

(q; q)3
∞
ε−2 + Σ(q) +O(ε1) , (7.95)
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where

Σ(q) =
1

24
(2− 90q − 462q2 − 1540q3 − 4554q4 − 11592q5 − 27830q6 + · · · ) . (7.96)

This function Σ appears in the Matthieu moonshine conjecture [54]. This function has
asymptotics as τ →∞

Σ(q̃) ∼ 1

12
q−1/8

√
τ q̃1/8 +

1

2
+

1

8
(2πi/τ) +

1

32
(2πi/τ)2 +

5

384
(2πi/τ)3 + . . . (7.97)

which is exactly of the form Ramanujan describes where the leading asymptotics appear as
they would for a modular form while the subleading appear as some new O(1) series. The
O(1) series is given by the expansion in x of

1

2
exp(x/8)

∞∑
k=0

Ak
xk

8kk!
, where

1

cos(x)
=

∞∑
k=0

Ak
x2k

(2k)!
. (7.98)

We see that this behaves exactly as Ramanujan describes. The failure of modularity of this
function is given by a special function called the Mordell integral.

Theorem A–38. [211, Prop. 1.5] We have the following equality√
i

τ
e
( z2

2τ

)
e
( z

2τ

)
q̃−

1
8L
(z
τ
,
w

τ
;−1

τ

)
+ e
(z

2

)
q−

1
8L(z, w; τ) =

1

2

∫ ∞
−∞

e(x2τ/2 + ixz)

cosh(πx)
dx .

(7.99)

Proof. The main idea of the proof is that the LHS and RHS both satisfy an inhomogenous
version of the same q and q̃ difference equations and are holomorphic. If there existed
two such functions then taking the difference and a product with x1/2θ(x; q) would give a
holomorphic elliptic function and therefore constant. This implies that if it is not zero that
the difference has poles at Z + τZ but it is holomorphic and hence must be zero.

Note that by shifting the contour with the argument of τ , the Mordell integral can be used
to define a holomorphic function in C− R≤0. Letting

ϑ(x; q) =
∞∑
k=0

(−1)kq−k(k+1)/2xk (7.100)

be the negative definate partail θ–function, the Mordell integral in the lower half plane is
given by √

i

τ
e
( z2

2τ

)
e
( z

2τ

)
q̃−

1
8ϑ
(z
τ

;−1

τ

)
+ e
(z

2

)
q−

1
8ϑ(z; τ) , (7.101)
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and the proof is analogous to that in the upper half plane with the addition of checking
boundary conditions as z and z/τ tend to i∞. This example illustrates an interesting
phenomenon. Notice that for |q| < 1 we have

(L1B1ϑ)(x, λ; q) = L(x, λ; q) . (7.102)

Therefore, we see that the mock modular behaviour of this function behaves well with respect
to q–Borel resummation. This is a somewhat generalised version of the observation from the
end of Section 7.7. An interesting point is that the q–Stokes phenomenon i.e. the variable
λ, does not appear in the failure of modularity as noted by Zwegers. This again holds in
more interesting examples associated to quanrtum modular forms discussed in [82].

7.9 Inhomogenous equations from modular forms
All of Ramanujan’s examples of mock modular forms where q–hypergeometric of a special
form. In particular, they were a sum over not a lattice but a cone. This meant that they
all naturally come in families that satisfy inhomogenous q–difference equations. These inho-
mogenous equations require asymptotics which also satisfy the same q–difference equation.
This in some sense, this is what requires the existence of the O(1) asymptotic series that
Ramanujan observed. This is analogous to the situation discussed in Section 6.5 and Exam-
ple 43 in constructing the function G. Therefore, after the introduction of quantum modular
forms, one can think of G that appeared there as a mock quantum modular form in the
vague sense of Ramanujan. However, this is somewhat redundant as we will see that mock
modular forms are examples of quantum modular forms. Finally, one of the other ways that
mock modular forms can be described is through indefinite θ–functions. These are again
summed over a cone leading to inhomogeneous relations and the same phenomenon.

To see how the inhomogeneity fixes the O(1) asymptotic series, consider again the third
order mock θ–function in its natural family

fm(q) =
∞∑
k=0

qk
2+km

(−q; q)k
. (7.103)

This family satisfies the recursion

fm(q) + fm+1(q)− qm+1fm+2 = 2 . (7.104)

We can apply the methods of Section 5.7, to find solutions that come from an asymptotic
series. Indeed, with the Ansatz

fm(~) =
3∑

k=0

k∑
`=0

ak,`m
`~` +O(~)4 (7.105)
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we find that equation (7.104) has a unique solution

fm(~) = 2 + (4 + 2m)~ + (36 + 18m+ 3m2)~2 +
(1640

3
+ 269m+ 53m2 +

13

3
m4
)
~3 +O(~4) .

(7.106)
Specialising to m = 0 we see exactly the asymptotic series we observed in the introduction
to this chapter 7.

7.10 A conjecture on order 7 mock θ–functions
In joint work with Matthias Storzer, we studied various aspects of mock modular forms and
noticed that using this idea of inhomogeneity when taking the expression of a mock modular
form and summing over the full lattice one finds a modular form. For example,

f(q) =
∑
k∈Z

qk
2

(−q; q)k
, (7.107)

is a modular form. This was noticed for all of Ramaunjan’s q–hypergeometric examples.
Therefore, using Ramanujan’s mock modular forms we see that they come with a natural
partner, the sum over the rest of the lattice, so that the pair sum to a modular form. This
was noticed in for example in [25, 16], which led to new examples of mock θ–functions which
were a modular form plus an old one. This works for most examples, however the order seven
mock modular forms lead to divergent sums and were not studied further. With access to
q–Borel resummation these can be easily defined.

Consider a t deformation of Ramanujan’s seventh order mock θ–functions

F+(t; q) =
∞∑
n=0

qn
2

(qn+1; q)n
t−n−1 =

∞∑
n=0

qn
2
(q; q)n

(q; q)2n

t−n−1. (7.108)

This satisfies the functional equations

tF+(t; q) + (1 + qt)F+(qt; q)− q2tF+(q2t; q)− q4tF0(q3t; q) = 2− 2q . (7.109)

Similarly, the sum over n < 0 gives the function

f−(t; q) = 2
∞∑
n=0

(−1)n
q−n(n+1)/2(q; q)2n+1

(q; q)n
tn (7.110)

and this also satisfies Equation (7.109). F− is divergent for |q| < 1 and therefore we take the
q–Borel resummation. We have

B1f−(ξ; q) = 2
∞∑
n=0

(q; q)2n+1

(q; q)n
ξn , (7.111)
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which is convergent for |ξ| < 1. This satisfies the equation

(1− ξ)B1f−(ξ; q)− B1f−(qξ; q) + (q2 + q3)ξB1f−(q2ξ; q)− q5ξB1f−(q4ξ; q) = 0 . (7.112)

Using this we can define an analytic extension of B1F−(ξ; q) to all ξ /∈ qZ≤0 . Using this we
take the Laplace transform to get a meromorphic function

F−(t, λ; q) = L1B1f−(t, λ; q) =
∑
k∈Z

B1f−(qkλt; q)

θ(qkλ; q)
. (7.113)

This function has expansion in ε when λ = exp(ε) at t = 1

F−(1, exp(ε); q) = (−2− 8q − 26q2 − 72q3 − 182q4 − 422q5 − 930q6 − 1948q7 + · · · )ε−2

+
(1

6
− 28

3
q − 275

6
q2 − 176q3 − 3389

6
q4 − 9449

6
q5 − 8125

2
q6 − 29183

3
q7 + · · ·

)
+O(ε2)

(7.114)

and hence
F−(1, exp(ε); q)− F+(1; q)

= (−2− 8q − 26q2 − 72q3 − 182q4 − 422q5 − 930q6 − 1948q7 + · · · )ε−2

+
(
− 5

6
− 31

3
q − 275

6
q2 − 177q3 − 3395

6
q4 − 9455

6
q5 − 8125

2
q6 − 29189

3
q7 + · · ·

)
+O(ε2) .

(7.115)
We first notice that the expansion of the ε−2 coefficient matches that of the second Andrews-
Gordon function

− 2(q; q)−3
∞

∞∑
k,`=0

q(k+`)2+`2+`

(q; q)k(q; q)`
. (7.116)

Secondly, we observe numerically that the expansion of the ε0 coefficient in (7.115) (but not
in (7.114), since F+(1; q) is only mock modular) is modular of weight, and in fact numerical
computations suggest the following conjecture.
Conjecture 8. The function

F−1(1, λ; q)− F+(1; q) (7.117)
is a Jacobi form of index 0 satisfying the same modular transformation as the Andrews-
Gordon functions times the η function of different weight (as part of a vector–valued modular
form).
This cojnecture is a more interesting example of the discussion around equation (7.91). This
would also imply that

Cε0(F−1(1, exp(ε); q)) (7.118)
is a mock θ–function with the same shadow as F0(1; q).
Remark 25. I believe this conjecture could be proved. A natural approach would be to try
and find some kind of q–series identity with some functions related to the second Andrews–
Gordon functions. This approach would involve some playing around with q–series, which
both Matthias and I haven’t done over the last year so I just report just the conjecture here.





Chapter 8

Quantum modular forms

Quantum modular forms are a generalisation to the previous examples of modular objects
we have seen. They encompass modular forms and mock modular forms as special cases.
The truly new examples historically came from functions at roots of unity, whose failure of
modularity has improved analyticity properties [208, Ex. 5]. These functions can roughly
be thought of as functions from h ∪Q ∪ h to some matrix group such that some multiplica-
tive failure of modularity defines a function that has an analytic extension to some simply
connected cut plane in C [82, 201].

The first basic example are just modular forms. However, we need to extend these to
functions at Q and then the lower half plane. This can be done through asymptotics and
here we find that information about the cusps is stored in an interesting way. The next
examples come as mock modular forms, however, we will not discuss this case in great
length. Then q–hypergeometric elements of the Habiro ring were the next set of interesting
examples. In particular, elements of the Habiro ring that came from knot invariants.

I will give a somewhat historical and somewhat pedagogical overview of the theory, starting
with modular forms at roots of unity. Then a discussion on asymptotics and how one
can prove these kind of asymptotic statements. Following this the cocycles used to define
quantum modular forms will be considered, along with some of their structural properties.
This will allow us to give our working definition of quantum modular forms. As usual we
will then explore this in the special case of the Pochhammer symbol, which will give us the
basic tool we will need when discussing state integrals.

Asymptotics of modular forms behave in very simple and beautiful ways. Here we will explore
this at roots of unity and then some similar properties of q–hypergeometric examples.

We have seen that various proper q–hypergeometric functions satisfy interesting asymptotics
as τ →∞. These asymptotics possess some interesting modular properties which stem from
the modular properties of the Pochhammer symbol. A famous and old problem is how
to make sense of certain divergent series. Indeed, if the asymptotic series that arise are
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convergent then one can subtract the leading order and explore subleading behaviour. In
the previous section, we numerically turned the asymptotic series into convergent functions
using Borel–Padé–Laplace in the example of the WRT invariant of 41(1, 2). There we saw
that indeed after removing the leading order we saw subleading terms. However, the use
of this resummation technique is numerical and therefore everything is conjectural. In this
section, we will explore the properties that we expect these resummations to satisfy. These
define a matrix valued cocycle and we will see that this gives interesting elements of some
group cohomologies of SL2(Z). This cohomological interpretation was realised in [86].

The fundamental result that will be necessary for the proofs of quantum modularity of q–
hypergeometric functions is that the Pochhammer symbol is a quantum Jacobi form. We
have essentially gone through the proof of this statement in Section 4.4 . We will go into the
slightly more detail that we need here.

8.1 Modular forms at roots of unity
Recall the Eisenstein series E2k(q) of equation (7.19) for k ∈ Z>1. These satisfies the modular
transformations

E2k(τ + 1)E2k(τ)−1 = 1 , and E2k(−1/τ)E2k(τ)−1 = τ 2k . (8.1)

We can define an extension of these functions to include the rationals. This is defined such
that

for x ∈ Q we have E2k(x) = denom(x)2k , (8.2)

where denom(0) = 1 and denom(∞) = 0. This extended version satisfies exactly the same
modular transformations (8.1). Finally, we can extend E2k to the lower half plane such that

for τ ∈ h we have E2k(τ) = −E2k(−τ) . (8.3)

We see that the whole extension E2k : h ∪ Q ∪ h → C satisfies the modular transforma-
tions (8.1). This is the most basic example of a (multiplicative) quantum modular form.
At rationals, the following proposition states that denom2k is the only rank one quantum
modular form whose “failure of modularity” is given by x2k up to multiplication by a constant.

Proposition 12. The only (multiplicative) quantum modular forms f : PQ → C that is
functions with

f(x+ 1) = f(x) and f(−1/x) = x2kf(x) (8.4)

are multiples of denom(x)2k.

Proof. Notice that if

g(x) =
f(x)

denom(x)2k
(8.5)
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we have
g(x+ 1) = g(x) , and g(−1/x) = g(x) . (8.6)

Then as SL2(Z) acts transitively on PQ we see that g(x) must be constant.

The reason that the extensions of E2k is the right extension is that it comes with something
similar to a strange identity. For τ ∈ h, x ∈ Z with τ →∞ with arg(x) > ε and x→∞ we
have

E2k(−1/τ) ∼ τ 2k +O(τ 2kq) , and E2k(−1/x) = x2k (8.7)

It appear that some information was lost, as we know that spaces of modular forms can have
dimension greater than one. However, there is additional data at roots of unity referred to
in [86] as tweaking.

To understand this, we should start with the first interesting example of a cusp form. This
comes from the 24–th power of the η functions so we can start there. Define a function from
rational numbers by the constant terms from equation (4.93)

ε
(r
s

)
=
√
−i

s−1∏
`=1

(
1− e

(` r
s

)) 1
2
− `
s
, (8.8)

where we use the convention that denom(x) > 0 and so s > 0. Note that

ε(x) ε(−x) = −i . (8.9)

We have the following lemma.

Lemma 20. [208, Ex. 0] For x ∈ Q×

e
(
− 1

24x

)
ε
(
− 1

x

)
= e

( 1

24 denom(x) numer(x)

)√
−i e

( x
24

)
ε(x) . (8.10)

Proof. Suppose that γ = [a, b; c, d] ∈ SL2(Z) with c > 0.

ε
(a
c

)
e
(a+ d

24c

)
= ε(a, b, c, d) ,

ε
(
− c

a

)
e
(−c+ b

24a

)
= ε(−sign(a)c,−sign(a)d, |a|, sign(a) b) .

(8.11)

Therefore,

e
(
− c

24a

)
ε
(
− c

a

)
e
(
a

24c

)
ε
(
a
c

) = e
(a+ d

24c
+
c− b
24a

− c

24a
− a

24c

) ε(a, b, c, d)

ε(−sign(a)c,−sign(a)d, |a|, sign(a) b)
.

(8.12)



296 CHAPTER 8. QUANTUM MODULAR FORMS

Then from the modularity of the η–function we have√
|a|τ + sign(a) b ε(−sign(a)c,−sign(a)d, |a|, sign(a) b)

=

√
|a|τ + sign(a) b

cτ + d
ε(0,−sign(a), sign(a), 0)

√
cτ + d ε(a, b, c, d)

(8.13)

Then we see that as

0 < arg(
√
|a|τ + sign(a) b) <

π

2

−π
2
< arg

(√ |a|τ + sign(a) b

cτ + d

√
cτ + d

)
< π

(8.14)

we have √
|a|τ + sign(a) b =

√
|a|τ + sign(a) b

cτ + d

√
cτ + d (8.15)

and so

e
(
− c

24a

)
ε
(
− c

a

)
e
(
a

24c

)
ε
(
a
c

) = e
( 1

24ac

)
ε(0,−sign(a), sign(a), 0) =

√
−i e

( 1

24ac

)
. (8.16)

Therefore, for γ = [a, b; c, d] ∈ SL2(Z) we see that

ε
(a
c

)24

e
(a+ d

24c

)24

= ε(a, b, c, d)24 = 1 . (8.17)

Therefore, if d is any integer such that

a(d+ cZ) = 1 + cZ , (8.18)

then
e
(a
c

)
ε
(a
c

)24

= e
(
− d

c

)
. (8.19)

Of course from the previous Lemma 20 we see that

e(x+ 1)ε(x+ 1)24 = e(x)ε(x)24 ,

e
(
− 1

x

)
ε
(
− 1

x

)24

= e
( 1

denom(x)numer(x)

)
e(x)ε(x)24 .

(8.20)

By a completely analogous proof to Proposition 12, we find that ε is the only function
satisfying these equations up to a multiplicative factor. This then indicates that modular
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forms at roots of unity keep track of their behaviour at cusps via the tweaking factor. For
example, from this it seems somewhat natural to define

∆ : h ∪Q ∪ h→ C s.t. ∆(τ) =

{ q
∏∞

j=1(1− qj)24 if τ ∈ h ,

q ε(q)24 if τ ∈ Q ,

q
∏∞

j=1(1− q−j)−24 if τ ∈ h .
(8.21)

The modular transformation now becomes

∆(−1/τ) = j12(τ ;S)∆(τ) (8.22)

where

j12(τ ;S) =

{ τ 12 if τ ∈ h ,
e
(

1
denom(x)numer(x)

)
if τ ∈ Q ,

τ−12 if τ ∈ h .

(8.23)

This automorphy factor is of a similar shape to all our examples and importantly, we need
this for all γ ∈ SL2(Z).

Definition 21 (Automorphy at Q). Take the cocycle λ from [86, Lem. 3.1] defined so that
for γ = [a, b; c, d] ∈ SL2(Z) and r/s ∈ Q we have

λγ(τ) =
c

s(cr + ds)
. (8.24)

This cocycle gives rise to automorphy factors at Q.

It would be interesting if one could define the modular forms at the rationals in such a way
that we get completely analogous results to that of classical modular forms. Importantly,
some rigidity that could also encompass cusp forms. However, we won’t say more on this
here and close this section with one last example, which illustrates that similar ideas should
also apply more generally.

The asymptotics of the A = 2 Nahm sums, a.k.a the Rogers–Ramanujan functions, were
discussed in Section 4.7. Recall, the equation

1−X = X2 (8.25)

which has solutions

X1 = −1

2
−
√

5

2
and X2 = −1

2
+

√
5

2
, (8.26)

gave rise to two functions for q = e(a/c)

fj,m(q) =

∏|c|−1
`=1

(
1− q`

) `
|c|−

1
2√

|c|Xj/(1−Xj) + 2|c|

|c|−1∑
r=0

qr
2+rmX

(2r+m)/|c|
j∏|c|−1

s=0 (1− qr+s+1X
1/|c|
j )

r+s+1
|c| −

1
2

, (8.27)



298 CHAPTER 8. QUANTUM MODULAR FORMS

that gave the constants of the asymptotic series. These functions satisfy the equation(
e
(

1
60x

)
f1,0

(
− 1

x

)
e
(

1
60x

)
f2,0

(
− 1

x

)
e
(
− 11

60x

)
f1,1

(
− 1

x

)
e
(
− 11

60x

)
f2,1

(
− 1

x

))(e(−11
60

1
denom(x) numer(x)

) 0

0 e( 1
60

1
denom(x) numer(x)

)

)

=
2√
5

(
sin
(

2π
5

)
sin
(
π
5

)
sin
(
π
5

)
− sin

(
2π
5

))(e(− x
60

)
f1,0(x) e

(
− x

60

)
f2,0(x)

e
(

11x
60

)
f1,1(x) e

(
11x
60

)
f2,1(x)

)
.

(8.28)
These equations can be proved from the modularity of the Rogers–Ramanujan functions
following a similar argument we gave for the η function. This illustrates some aspects of how
a theory at roots of unity should generalise. Importantly, the tweaking factor(

e(11
60

1
denom(x) numer(x)

) 0

0 e(−1
60

1
denom(x) numer(x)

)

)
, (8.29)

sees that behaviour at the cusp of the Rogers–Ramanujan functions as it did for the η
function.

8.2 Quantum modular forms: looking back

In [208], quantum modular forms are introduced as functions f : Q→ C such that

hγ = f − (f |kγ) (8.30)

is “better behaved”. The idea was that while f can have absolutely no continuity, hγ could
become continuous or even analytic. This definition is additive in nature whereas so far we
have discussed modular forms in a sense multiplicatively. In this way, consider the function

f : Q× → C s.t. f(x) = log(denom(x)) . (8.31)

This function has absolutely no continuity however the difference under the S matrix is given
by

f(x)− f(−1/x) = log(|x|) . (8.32)

To get a feeling for this change we can consider a before and after plot shown in Figure 8.1.
In [208], six examples are given (from 0 to 5) and example five was by far the most interesting
and surprising. This was related to a function that we have previously seen. In particular,
this example was related to the Kashaev invariant of the figure eight knot 41. Recall the
Kashaev invariant

J̃0(q) =
∞∑
k=0

(−1)kq−k(k+1)/2(q; q)2
k =

∞∑
k=0

(q; q)k(q
−1; q−1)k . (8.33)
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1

x

log(denom(x))

4

4

1

x

log(denom(x))− log(denom(−1/x))

4

4

Figure 8.1: Before and after plots of quantum modularity of the log(denom) function.

We can see from the last equality this is real valued. We have seen the asymptotics of this
function in Example 43 through q = e(1/n) for n ∈ Z. However, the remarkable observation
in [208] was that for some uniformity on the denominator if n ∈ Q approaches ∞ then

J̃0(41; e(−1/n)) = J̃0(41; e(n))Φ̂(ρ1)(2πi/n)

= J̃0(41; e(n))e
(VC(ρ1)

(2πi)2
n
) e(1/8)√√

−3

(
1− 11

24
√
−3

3

2πi

n
+

697

1152
√
−3

6

(2πi

n

)2

+ · · ·
)
.

(8.34)
Then the function

log(J̃0(41; e(−1/n)))− log(J̃0(41; e(n))) (8.35)

behaves better than
log(J̃0(41; e(n))) . (8.36)

Indeed numerically, it seems to have a smooth limit as one approaches a rational number on
both sides but is discontinuous at each rational. One can consult [208] for some nice figures
plotting these functions.

When Zagier originally introduced quantum modular forms, he deliberately didn’t define
them. His paper instead gives examples, which all have similar behaviour in slowly increasing
levels of complexity. More than ten year later we have a much clearer idea about what
quantum modular forms should be, and this improved analytic behaviour will be much
stricter than we saw in this example. This example was refined to give rise to analytic
functions on simply connected regions in C in [86]. There was one final computation needed,
which we include in Section 9.2 based on the work of [70].
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The quantum modularity observed with the previous definition is only part of a bigger story.
However, when exploring examples it is often helpful to understand these leading asymptotic
statements. These can often be proved for a given example by using modularity results of
Pochhammer symbols, Euler–Maclaurin, and stationary phase. The methods used in [29]
can be applied to many q–hypergeometric functions and the main point is to use Theorem 29.
We will illustrate these methods in the example of the WRT invariant of 41(1, 2) after some
numerical observations. We will see that these methods work at leading order and give
surprising insight into exponentially small corrections but why this works is not entirely
clear to me. However, before dealing with that slightly more complicated example, we can
consider Nahm sums.

Before this, one should remark that, as we have described originally, quantum modular
forms were only defined for τ ∈ Q. However, q̃–series with certain asymptotics as |τ | tends
to infinity with =(τ) bounded away from zero and infinity also possess similar properties.
Indeed, the important observation is that e(τ) is bounded away from zero. Therefore, we
can see interesting q̃ corrections to the leading order of the asymptotics with these horizontal
limits. While these statements are in a sense weaker than what we get via state integrals in
part V, we include this example here to illustrate the method.

Example 58. We can use Theorem 29 to analyse the asymptotics of this function. Firstly,
suppose that <(τ) > 0 and let q = e(τ) and q̃ = e(−1/τ). Using ψ from the theorem given
in equation (4.65), define

φ(τ, k) = −ψ(τ, 1, 0, k − 1) . (8.37)

Note that

φ(τ, k + 1/τ) = φ(τ, k) . (8.38)

Then for τ small enough ( i.e. <(τ) < 1)

fA,m,n(q) =
∞∑
k=0

e(nk)
q
A
2
k2+km

(q; q)k
=

∞∑
k=0

e(nk)
q
A
2
k2+km

(q̃; q̃)bk<(τ)c
exp(φ(τ, k))

=
∞∑
`=0

`≤k<(τ)<`+1∑
k∈Z

e(nk)
q
A
2
k2+km

(q̃; q̃)`
exp(φ(τ, k)) .

(8.39)
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Notice that for A, k, ` ∈ Z we have Ak` ∈ Z1 and so, letting x = k − `/τ ,

e
(A

2
k2τ + kmτ + nk

)
= e

(A
2

(k − `/τ)2τ + (k − `/τ)mτ + n(k − `/τ)− A

2
`2/τ +m`+ n`/τ

)
= e

(A
2
x2τ + xmτ + nx− A

2
`2/τ +m`+ n`/τ

)
.

(8.40)

Therefore, we find

fA,m,n(q) =
∞∑
`=0

e(m`)
q̃
A
2
`2−n`

(q̃; q̃)`

0≤<(τx)<1∑
x∈Z−`/τ

e
(A

2
x2τ + xmτ + nx

)
exp(φ(τ, x)) . (8.41)

Therefore, we want to understand the asymptotics as τ → 0 of the sum

f(τ, `) =

0≤<(x)<1∑
x∈τZ−`

e
(A

2

x2

τ
+ xm+ n

x

τ

)
exp

(
φ
(
τ,
x

τ

))
. (8.42)

We can apply the Euler–Maclaurin summation formula from Theorem 25 to this sum in a
form similar to that given in [203, Lec. 2]. There is one important subtly, which is that for
j ∈ Z and x ∈ τZ− ` we have

e
(
j
x

τ

)
= e

(
− j`

τ

)
, (8.43)

therefore, we wish to apply Euler–Maclaurin to all the sums

f(τ, `) = e
(j`
τ

) 0≤<(x)<1∑
x∈τZ−`

e
(A

2

x2

τ
+ xm+ (n+ j)

x

τ

)
exp

(
φ
(
τ,
x

τ

))
. (8.44)

This ambiguity can be seen to arise as the initial sum only depends on n+ Z.

Note that at the end points of the summation, as τ → 0, for certain choices of j the con-
tribution to the Euler–Maclaurin summation formula is exponentially small. Therefore, for
these j, the sum is approximated to exponentially small corrections by

f(τ, `) ∼ e
(
j`
τ

)
τ

∫ i
=(τ)
<(τ)

`+ τ
<(τ)

i
=(τ)
<(τ)

`

e
(A

2

x2

τ
+ xm+ (n+ j)

x

τ

)
exp

(
φ
(
τ,
x

τ

))
dx . (8.45)

1If A ∈ Q then this condition fails. This is the only point that it is needed and we have included this
assumption purely to simplify the discussion. To deal with A /∈ Z we split the sums into congruences. This
will be a finite number given by the denominator of A. These finite number of sums will again have the
following decoupling between k and `.
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We can then apply stationary phase to these integrals. To do this we need to understand the
geometry of the critical points of the logarithm of the integrand to leading order to apply a
version of Laplace’s method. We will choose the j so that such an analysis will work and we
will find critical points near the contour. Then deforming the contour to pass through these
points will give rise to the asymptotics.

We have

e
(A

2

x2

τ
+ xm+ (n+ j)

x

τ

)
exp

(
φ
(
τ,
x

τ

))
= e

( 1

(2πi)2τ
Li2(e(x))− 1

(2πi)2τ

π2

6
+
A

2

x2

τ
+ (n+ j)

x

τ
+ o(τ−1)

)
.

(8.46)

and therefore, the critical points are given by solutions to

0 =
∂

∂x

( 1

(2πi)2
Li2(e(x))− 1

(2πi)2

π2

6
+
A

2
x2 + (n+ j)x

)
= − 1

2πi
log(1− e(x)) + Ax+ n+ j .

(8.47)

To find solutions to this equation we take X = e(x) and find a polynomial equation for X,

1−X = e(n)XA . (8.48)

This equation is referred to as Nahm’s equation. Choosing a solution to this equation and
the equation

e(x) = X (8.49)

such that <(x) is close to [0, 1] will give rise to the critical points of interest. Once x is
chosen, we then choose j so that it is an honest critical point. Once this is done we deform
the contour using the method of steepest descent. For the A = 4 example, this leads to j = 1
and as seen in Figure 8.2, we can apply stationary phase around the x4,0 critical point to
prove this form of quantum modularity, as τ approaches 0 along a horosphere

f4,m,0(q) ∼ Φ̂(4)
m (2πiτ)f4,1,0(q̃) . (8.50)
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0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5
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1.0

Figure 8.2: Zoomed in version of the ` = −1 plot near [0, 1]. This shows that the integrand
is exponentially smaller that the critical point at the endpoints and hence Euler–Maclaurin
can be applied and stationary phase. The ` = 0,−2 from the previous figure has endpoints
the same size and hence Euler–Maclaurin leads to boundary terms while for ` = −3 the end
points are exponentially larger than the critical point.
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8.3 Quantum modularity of the WRT invariant of 41(1, 2)

Consider the following values of the WRT invariant:

X
(
e
( 1

1000

))
= −6.3258 · · ·+ i14.804 . . . ,

X
(
e
( 1

1000 + 1/2

))
= 1.6433 · · · × 1098 + i6.7579 · · · × 1096 ,

X
(
e
( 1

1000 + 1/3

))
= 1.0551 · · · × 1098 + i8.7759 · · · × 1097 .

(8.51)

The immediate observation is the order of magintude shift. The behaviour of the first two
values is expected from Witten’s asymptotic expansion conjecture 2 and the Chen-Yang
volume conjecture 4 for WRT invariants. Indeed, notice that

X
(
e
( 1

1000 + 1/2

))
e
(
− VC7

(2πi)2
(1000 + 1/2)

)
= −22.044 · · ·+ i22.943 . . . ,

X
(
e
( 1

1000 + 1/3

))
e
(
− VC7

(2πi)2
(1000 + 1/3)

)
= −26.465 · · ·+ i7.6613 . . . .

(8.52)

More generally we have the following observation, which is in fact a theorem extending the
result of Ohtsuki [150].

Theorem A–39. For r ∈ Q\Z we have

lim
k→∞

log
(
X
(
e
(

1
k+r

))
e
(
− VC7

(2πi)2 (k + r)
))

k + r
= 0 . (8.53)

This theorem is a slight generalisation of the Chen–Yang volume conjecture. However, as
in [208, 47, 45], we can go further and find a full asymptotic expansion. Indeed, numerically
using the methods of Section 3.2, one finds that there is some X(r) ∈ Z[e(−r)] such that

X
(
e
( 1

k + r

))
∼ X(r) e(3/8)

√
k + r e

( VC7

(2πi)2
(1000 + r)

)
Φ(σ7)

( 2πi

k + r

)
(8.54)

where

Φ(σ7)(h) = aσ7
0 + aσ7

1 h+ aσ7
2 h

2 + . . . =
1√
δ7

(
1 + Aσ7

1 h+ Aσ7
2 h

2 + . . .
)

(8.55)
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is a factorially divergent series with Ai ∈ F . The first two values Ai are given by

(
24δ3

7A
σ7
1

1152δ6
7A

σ7
2

)
=



1497746 3014838521575
1345119 2732414541176
−3675733 −7414786842283
2082815 4197826806919
−839488 −1690529009777
−283405 −574198051621
383432 771765277669



T

1
ξ7

ξ2
7

ξ3
7

ξ4
7

ξ5
7

ξ6
7


=

(
−158.75 · · · − i57.225 . . .
84862. · · ·+ i924.76 . . .

)

(8.56)
Indeed, as we saw in Section 2.6, X(1/2) = 2 and for x = 2πi

1000+1/2∣∣∣X(exp(x))
∣∣∣ = 1.6447 · · · × 1098 ,∣∣∣X(exp(x))− 2 e(3/8) e

(VC7

2πix

)√2πi

δ7x

∣∣∣ = 1.1735 · · · × 1095 ,∣∣∣X(exp(x))− 2 e(3/8) e
(VC7

2πix

)√2πi

δ7x

(
1 + Aσ7

1 x
)∣∣∣ = 1.2530 · · · × 1092 ,∣∣∣X(exp(x))− 2 e(3/8) e

(VC7

2πix

)√2πi

δ7x

(
1 + Aσ7

1 x+ Aσ7
2 x

2
)∣∣∣ = 3.9674 · · · × 1089 .

(8.57)

These numbers Ai can be computed from a formal Gaussian integration, as discussed in
Example 24. Although these agree for this example, their topological invariance has not
been established.
Lets continue, in a similar manner to [208], with a list of a few values of this not so mysterious
function X(r). We have the following equalities that can be computed numerically:

X(1/2) = X(e(−1/2)) = 2 ,

X(1/3) = X(e(−1/3)) = 1− e(−1/3) ,

X(1/4) = X(e(−1/4)) = 1− e(−1/4) ,

X(1/5) = X(e(−1/5)) = 2− e(−1/5) + 2e(−2/5) + 2e(−3/5) ,

X(1/6) = X(e(−1/6)) = 1− e(−1/6) ,

X(1/7) = X(e(−1/7)) = 2− 2e(−1/7)− e(−2/7) + e(−3/7) ,

X(1/8) = X(e(−1/8)) = 3− 3e(−1/8) .

(8.58)

This equality persists for r with larger denominator and in fact we have the following theorem.

Theorem 4. The WRT invariant for 41(−1, 2) is a quantum modular form in the sense
of [208]. That is, for r ∈ Q\Z as k →∞,

X(e(−1/(k + r))) ∼ X(e((k + r)))e(−3/8)

√
k + r

δρ6

e
(
− VC6

(2πi)2
(k + r)

)
. (8.59)
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1

x

log |W (e(x))|

1
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1

x

log |W (e(x))/W (e(−1/x))|
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5

Figure 8.3: Before and after plots of quantum modularity.

We can form similar plots to those in [208] as seen in Figure 8.3. Notice that compared with
the plots in [208] the second is behaving much worse than one could potentially hope. This
is related to the fact that the volume of 41 is larger than the volume of 41(−1, 2). However,
if one looks close one can see that at each rational number the behaviour on either side
becomes much better. We will see that the refined modularity [86] will give rise to functions
which satisfy much better analytitc properties and one can compare with Figure 8.5.

Notice that this actually extends to the case that r ∈ Z. We know from Witten’s asymptotic
expansion conjecture that the LHS grows polynomially while the RHS vanishes as X(1) =
0. Therefore, in the r = 0 case, the Theorem 4 states that the LHS is dominated by
e(VC7/(2πi)

2k). Already the form of Witten’s asymptotic expansion conjecture and this
link suggest that there could be an improvement to this result.

Proof of Theorem 4. We can rewrite the WRT invariant of 41(1, 2) computed in Example 16
as

(1− q)X(q) =
∑

0≤`≤k

(−1)kq−
1
2
k(k+1)+`(`+1) (q; q)2k+1

(q; q)`(q; q)k−`

=
∞∑

`,j=0

(−1)j+`q−
1
2
j(j+1)−j`+`(`+1)/2 (q; q)2j+2`+1

(q; q)`(q; q)j
.

(8.60)

Then consider the elements

wm,n,p(q) =
∞∑

`,j=0

(−1)j+`q−
1
2
j(j+1)−j`+`(`+1)/2+mj+n` (q; q)2j+2`+p

(q; q)`(q; q)j
. (8.61)

Using the quantum modular properties of the q–Pochhammer symbol from Theorem 29, we
can analyse the asymptotic behaviour of (1 − q)X(q). To do this, for ψ from Theorem 29,
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let
φ(k, τ) = −ψ(τ, 1, 0, k − 1) (8.62)

Then, for r = a/c ∈ Q, we have
(1− e(−1/r))X(e(−1/r))

=

2`+2j≤a∑
0≤`,0≤j

(−1)
j+`

e
(

1
2r
j(j + 1) + j`

r
− 1

2r
`(` + 1)

)
(e
(
− 1
r

)
; e
(
− 1
r

)
)2j+2`+1

(e
(
− 1
r

)
; e
(
− 1
r

)
)`(e

(
− 1
r

)
; e
(
− 1
r

)
)j

=

2`+2j≤a∑
0≤`,0≤j

(−1)
j+`

e

(
r
2

(
j
r

)2
+ r j

r
`
r
− r

2

(
`
r

)2
+ j

2r
− `

2r

)
(e (r) ; e (r))⌊ 2j+2`+1

r

⌋e(φ(2j + 2` + 1, r))

(e (r) ; e (r))⌊ `
r

⌋(e (r) ; e (r))⌊ j
r

⌋e(φ(`, r))e(φ(j, r))

=

2`+2j≤a∑
0≤`,0≤j

e

(
r

2

(
j

r
−
⌊
j

r

⌋)2

+ r

(
j

r
−
⌊
j

r

⌋)(
`

r
−
⌊
`

r

⌋)
−
r

2

(
`

r
−
⌊
`

r

⌋)2

+
r

2

(
j

r
−
⌊
j

r

⌋)
−
r

2

(
`

r
−
⌊
`

r

⌋))

× (−1)

⌊
j
r

⌋
+
⌊
`
r

⌋
e

(
−r
2

⌊
j

r

⌋2
− r

⌊
j

r

⌋ ⌊
`

r

⌋
+
r

2

⌊
`

r

⌋2
+
r

2

⌊
j

r

⌋
−
r

2

⌊
`

r

⌋)

× e

(
1

2

(
j

r
−
⌊
j

r

⌋)
−

1

2

(
`

r
−
⌊
`

r

⌋)) (e (r) ; e (r))⌊ 2j+2`+1
r

⌋e(φ(2j + 2` + 1, r))

(e (r) ; e (r))⌊ `
r

⌋(e (r) ; e (r))⌊ j
r

⌋e(φ(`, r))e(φ(j, r))

=

3∑
R=0

2L+2J+R<c∑
0≤L,0≤J

(−1)
J+L

e

(−r
2
J
2 − rJL +

r

2
L

2
+
r

2
J −

r

2
L

)
(e (r) ; e (r))2J+2L+R

(e (r) ; e (r))L(e (r) ; e (r))J

×
R≤2x+2y≤R+1∑

(x,y)∈[0,1)2∩
(
1
r
Z2−(J,L)

)
e(φ(2rx + 2ry + 1, r))

e(φ(rx, r))e(φ(ry, r))
e

(
r

2
x
2

+ rxy −
r

2
y
2

+
r

2
x−

r

2
y +

1

2
x−

1

2
y

)
.

(8.63)

where we used the substitution

J =

⌊
j

r

⌋
, L =

⌊
`

r

⌋
, x =

j

r
−
⌊
j

r

⌋
, y =

`

r
−
⌊
`

r

⌋
, (8.64)

and the fact that for n ∈ Z we have

φ(rx+ nr, r) = φ(rx, r). (8.65)

Importantly,

e(rx) = e

(
r

⌊
j

r

⌋)
= e (−rJ) , e(ry) = e

(
r

⌊
`

r

⌋)
= e (−rL) . (8.66)

Therefore we can exchange these terms between the sums over L, J and the sums over x, y.
In particular, for (a, b) ∈ Z2 we have

X(e(−1/r))

=
3∑

R=0

2L+2J+R<c∑
0≤L,0≤J

(−1)
J+L

e

(−r
2
J
2 − rJL +

r

2
L

2
+
r

2
J −

r

2
L + arJ + brL

)
(e (r) ; e (r))2J+2L+R

(e (r) ; e (r))L(e (r) ; e (r))J

×
R≤2x+2y≤R+1∑

(x,y)∈[0,1)2∩
(
1
r
Z2−(J,L)

)
e(φ(2rx + 2ry + 1, r))

e(φ(rx, r))e(φ(ry, r))
e

(
r

2
x
2

+ rxy −
r

2
y
2

+
r

2
x−

r

2
y +

1

2
x−

1

2
y + arx + bry

)
.

(8.67)

This form of the expression makes it clear the asymptotic expansions come from a stationary
phase approximation applied to the sum

R≤2x+2y≤R+1∑
(x,y)∈[0,1)2∩

(
1
r
Z2−(J,L)

) e
(
φ(2x + 2y, r)− φ(x, r)− φ(y, r) +

r

2
x
2

+ rxy −
r

2
y
2

+
r

2
x−

r

2
y +

1

2
x−

1

2
y + arx + bry

)
. (8.68)
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Figure 8.4: The regions R that arise from the stationary phase approximation.

As r tends to infinity, this sum is approximated by the integral
∫ ∫

R
e

(
φ(2rx + 2ry + 1, r)− φ(rx, r)− φ(ry, r) +

r

2
x
2

+ rxy −
r

2
y
2

+
r

2
x−

r

2
y +

1

2
x−

1

2
y + arx + bry

)
dxdy , (8.69)

where R indexes the regions depicted in Figure 8.4. Noting that from Section 4.3 we have

φ(rx, r) ∼ r

(2πi)2
Li2(e(−x)) +

r

24
+O(r0) , (8.70)

we see that the critical points of the integrand are determined by the stationary points of

Va,b(x, y) =
1

(2πi)2
Li2(e(−2x− 2y))− 1

(2πi)2
Li2(e(−x))− 1

(2πi)2
Li2(e(−y))

− 1

24
+

1

2
x2 + xy − 1

2
y2 +

1

2
x− 1

2
y + ax+ by .

(8.71)

These satisfy equations

0 =
2

2πi
log(1− e(−2x− 2y))− 1

2πi
log(1− e(−x)) + x+ y +

1

2
+ a

0 =
2

2πi
log(1− e(−2x− 2y))− 1

2πi
log(1− e(−y)) + x− y − 1

2
+ b .

(8.72)

Letting X = e(x), Y = e(y) we find equations

(1−X−2Y −2)2

(1−X−1)
XY = −1

(1−X−2Y −2)2

(1− Y −1)
XY −1 = −1 .

(8.73)

The solutions to these equations are given by

X = 10− 19ξ − 76ξ2 + 52ξ3 − 20ξ4 + 4ξ5 + 13ξ6

Y = −10 + 24ξ + 87ξ2 − 59ξ3 + 23ξ4 − 5ξ5 − 15ξ6 .
(8.74)
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Now given any logarithm for (X, Y ) we can choose an a, b which give rise to a solution to
Equation (8.72). For example, consider the solution associated to the 3rd embedding of the
trace field

(x3, y3) = (i0.0081372 . . . , 1.0000 · · ·+ i0.0090947 . . . ) . (8.75)

We find that

2 + a0 =
2

2πi
log(1− e(−2x0 − 2y0))− 1

2πi
log(1− e(−x0)) + x0 + y0 +

1

2
+ a0

−1 + b0 =
2

2πi
log(1− e(−2x0 − 2y0))− 1

2πi
log(1− e(−y0)) + x0 − y0 −

1

2
+ b0 .

(8.76)

Choosing (a0, b0) = (−2, 1) we find that

V−2,1(x0, y0)− 1

4π2
VC3 = −1 . (8.77)

Therefore, associated to this solution to Equation (8.72) we get four elements of the Habiro
ring

w(x0,y0,R)(q) = qV−2,1(x0,y0)− 1
4π2 VC3wa0,b0,R(q) = q−1w−2,1,R(q) . (8.78)

Considering ρ6 one can show that the element of the Habiro ring is given by

Xρ6(q) = w−1,1,1(q) (8.79)

and with this choice one can apply Euler–Maclaurin of Theorem 25 with endpoints expo-
nentially smaller than than the critical points, therefore allowing a stationary phase approx-
imation.

Following [86], we can indeed develop a conjectural improvement of this result. To do this
we would like to turn the asymptotic series Φρ into an analytic function. To do this we can
use the sequence of Borel transformation, Padé approximation and Laplace transformation
discussed in sections 3.6 and 3.7. Let s2N(Φ) be the Laplace transform of the [N/N ] Padé
approximate of the Borel transform. With 200 coefficients of Φρ we can numerically compute
to around order 10−40 at 2πi/100. Indeed, the worst convergence is from Φρ0 and the
difference between the numerical values using 200 and 198 coefficents is

s200(Φρ0)(2πi/100)− s198(Φρ0)(2πi/100) = (4.8831 · · ·+ 3.0178 . . . i)× 10−40 , (8.80)

which give a lower bound for the numerical error. Numerically it appears that roughly that

log |sN(Φρ0)(2πi/100)− s500(Φρ0)(2πi/100)| ∼ −6.3
√
N

log |sN(Φρ0)(2πi/200)− s500(Φρ0)(2πi/200)| ∼ −8.8
√
N

(8.81)
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The values of the various numerical Borel–Padé–Laplace transforms are given by

s200(Φρ0)(2πi/100) = 0.022362 · · · − 0.042136 . . . i

e(3/8)
√

100 exp (VCρ1100/2πi) s200(Φρ1)(2πi/100) = −0.70748 · · · − 2.8524· · ·
e(−1/8)

√
100 exp (VCρ2100/2πi) s200(Φρ2)(2πi/100) = 1.0653 · · · − 2.6036 . . . i

e(3/8)
√

100 exp (VCρ3100/2πi) s200(Φρ3)(2πi/100) = −0.95412 · · ·+ 0.53897 . . . i

e(−1/8)
√

100 exp (VCρ4100/2πi) s200(Φρ4)(2πi/100) = 2.9304 · · ·+ 2.3781 . . . i

e(3/8)
√

100 exp (VCρ5100/2πi) s200(Φρ5)(2πi/100) = −0.55386 · · · − 4.2697 . . . i

e(3/8)
√

100 exp (VCρ6100/2πi) s200(Φρ6)(2πi/100) = (1.0359 · · ·+ 0.31226 . . . i)× 10−9

e(3/8)
√

100 exp (VCρ7100/2πi) s200(Φρ7)(2πi/100) = (2.2618 · · ·+ 0.58777 . . . i)× 1010 .
(8.82)

The difference between the smooth optimal truncation and the Borel–Padé–Laplace resum-
mation of the series Φ(ρ0) with two hundred coefficients at 2πi/100 is

(−5.0344 · · ·+ 0.083534 . . . i)× 10−5 . (8.83)

So we see that the smooth optimal truncation seems to give around four digits of accuracy.
This issue in this example is that the coefficients grow extremely fast. However, as we saw
the Borel–Padé–Laplace resummation is stable to around forty digits.

If we sum over the SU(2) flat connections as predicted by Witten’s conjecture we find that

X(e(1/100)) = 2.7567 · · · − i7.3897 . . .

X(e(1/100))−
∑

ρ∈{ρ0,ρ1,ρ2,ρ4,ρ5}

µρ100dρ exp (VCρ100/2πi) s200(Φρ)(2πi/100)

= 1.0359 . . . 10−9 + i3.1226 . . . 10−10 .

(8.84)

Therefore, we find that additionally summing over the anti–geometric connection,

X(e(1/100))−
∑

ρ∈{ρ0,ρ1,ρ2,ρ4,ρ5,ρ6}

µρ100dρ exp (VCρ100/2πi) s200(Φρ)(2πi/100)

= 6.1973× 10−39 + i1.8705× 10−38 .

(8.85)

Notice that Equations (8.85) vanishes to the order of the error in Equation (8.80). These
numerics lead to the following conjecture.

Conjecture 9. For k ∈ Z>0

X(e(1/k)) =
∑

ρ∈{ρ0,ρ1,ρ2,ρ4,ρ5,ρ6}

µρk
dρ exp (VCρk/2πi) s(Φ

ρ)(2πi/k) . (8.86)
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This seems to be in contrast to Witten’s asymptotic expansion conjecture where we only
expect SU(2) flat connections to appear. However, as already noted in [67], the asymptotic
series associated to the SU(2) flat connections contain contributions from the other SL2(C)
flat connections which leads to the series ρ6 appearing as an exponentially small correction
(which of course does not contradict the conjecture).

With some more experimentation one can naturally extend this conjecture as follows.

Conjecture 10. For k ∈ Z>0 and r ∈ Q≥0 there exists functions Xρ : Q→ C such that

X
(
e
( 1

k + r

))
=

∑
ρ∈{ρ0,ρ1,ρ2,ρ4,ρ5,ρ6,ρ7}

Xρ(r)µρ(k + r)dρ exp
(VCρ(k + r)

2πi

)
s(Φρ)

( 2πi

k + r

)
,

(8.87)
and Xρ(r) ∈ Z[e(r)].

The first few values of the functions Xρ(r) are given

r 1 1/2 1/3 1/4 1/5

Xρ0(r) 1 1 1 1 1

Xρ1(r) 1 1 −1− e
(

1
3

)
1 −2− 2e

(
2
5

)
Xρ2(r) 1 1 −1− e

(
1
3

)
−1− 2i −2− e

(
1
5

)
− e

(
3
5

)
Xρ3(r) 0 0 1 + 2e

(
1
3

)
−2i −1− e

(
1
5

)
− 2e

(
2
5

)
− e

(
3
5

)
Xρ4(r) 1 1 2 + 2e

(
1
3

)
−1 + 2i 1− e

(
1
5

)
+ e

(
2
5

)
Xρ5(r) 1 1 2− e

(
1
3

)
1 3 + e

(
1
5

)
+ e

(
2
5

)
+ e

(
3
5

)
Xρ6(r) 1 −1 1 i 2− e

(
3
5

)
Xρ7(r) 0 2 2 + e

(
1
3

)
1 + i 3 + e

(
1
5

)
+ 3e

(
2
5

)
+ 3e

(
3
5

)
Assuming this conjecture one can numerically compute the values of Xρ for rational numbers
with denominators up to a few hundred. With this data one can recognise these functions
as combinations of Xm,n(e(−1/r)). However, these formulae can be quite complicated if
not in the correct form. Indeed, it is better to study the function W in more detail to
guess the correct formulae. However, considering small solutions to Equation (8.72), we can
numerically find formulae for Xρ for summarised in the following conjecture.
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Conjecture 11. The functions Xρ in conjecture 10 are given by the following elements of
the Habiro ring

Xρ1(q) = w0,2,0(q) ,

Xρ2(q) = w−1,0,0(q) ,

Xρ3(q) = q−1w−1,0,1(q) + w−1,2,1(q) + q−1w−2,1,3(q) ,

Xρ4(q) = w0,1,0(q) ,

Xρ5(q) = w−1,1,0(q) ,

Xρ6(q) = w−1,1,1(q) ,

Xρ7(q) = w−1,1,0(q) + q−1w−2,0,1(q) .

(8.88)

8.4 Non–commutative group cohomology
We will breifly recall the first group cohomology of G valued in a right G–moduleM . Firstly,
the set of one cocycles Z1(G,M) is defined to be the set of maps f : G→M such that

f(gh) = f(g)h+ f(h) . (8.89)

The set of one coboundary B1(G,M) is defined to be the set of maps f : G→M such that
for some m ∈M we have

f(g) = mg −m. (8.90)

Then as always we define

H1(G,M) = Z1(G,M)/B1(G,M) . (8.91)

We will be interested in some kind of non–abelian valued first group cohomology of SL2(Z).

Firstly, we define

Cγ =

{ C− R≤−d/c if c > 0 ,
C− R≥−d/c if c < 0 ,

C− R if c = 0 .
(8.92)

Consider, for N ∈ Z>0, the set of maps Ω from SL2(Z) to matrix valued holomorphic
functions such that Ωγ ∈ GLN(O(Cγ)) and, where defined, we have the cocycle condition

Ωγγ′(τ) = Ωγ

(a′τ + b′

c′τ + d′

)
Ωγ′(τ) . (8.93)

Then we say that two cocycles Ω,Ξ are equivalent if for some f ∈ GLN(O(C))

f
(aτ + b

dτ + c

)
Ωγ(τ) = Ξγ(τ)f(τ) . (8.94)

Unfortunately, one cannot define a group structure for cohomology theories valued in non–
commutative groups. We will refer to these cocycles simple as QM–cocycles if rank N .
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Remark 26. While there is no group structure for a fixed N there is a natural addition
between QM–cocycles defined through direct sum so that

(Ω⊕ Ξ)γ =

(
Ωγ 0
0 Ξγ

)
. (8.95)

Notice that this addition is commutative, as for Ω and Ξ of rank N,M respectfully(
0 IdM

IdN 0

)(
Ωγ 0
0 Ξγ

)
=

(
Ξγ 0
0 Ωγ

)(
0 IdM

IdN 0

)
. (8.96)

We could take some kind of Grothendieck group with respect to this operation of addition
but we will not need or use this kind of structure. This operation of addition corresponds to
disjoint union for the examples coming from three–manifolds.

Example 59. Consider a representation ρ : SL2(Z) → GLN(C) then we find that ρ is a
QM–cocycle. Moreover, if ρ is equivalent to ϕ then as the action of SL2(Z) has fixed points
ρ and ϕ are conjugate representations.

Example 60. If we take
Ωγ(τ) = (cτ + d)k. (8.97)

Then Ω is a QM–cocycle.

Note that QM–cocycles can be multiplied by QM–cocycles of rank one and remain QM–
cocycles. Therefore, this last example allows us to globally change the weight of QM–cocycles
so that these is no natural global weight. This is an example showing that any automorphy
factor that is holomorphic for γ on Cγ then this will give rise to a QM–cocycle.

Proposition 13. If Ω and Ξ are QM–cocycles and if for all γ with 1 ∈ Cγ

Ωγ(1) = Ξγ(1) , (8.98)

then Ω = Ξ.

Proof. Let for n ∈ Z>1

γn =

(
n+ 1 1
n 1

)
(8.99)

and note that
T kSγn =

(
−n+ k(n+ 1) −1 + k

n+ 1 1

)
(8.100)

From the cocycle condition

ΩTkS

((n+ 1)τ + 1

nτ + 1

)
= ΩTkSγn(τ)Ωγn(τ)−1 . (8.101)
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Then noting that Cγn = C − R≤−1/n and CTkSγn = C − R≤−1/(n+1) we see that we can
compute

ΩTkS

(
1 +

1

n+ 1

)
= ΩTkSγn(1)Ωγn(1)−1 (8.102)

Therefore, ΩTkS = ΞTkS as their difference has a ccumulation point of zeros on the interior
of their domain. Then using the cocycle condition every element of the form

γ′ = T k1ST k2S · · ·T kNS (8.103)

has Ωγ′ = Ξγ′ . Then finally, using the identity TSTST = S we see that

ΩTSTS(τ + 1)−1ΩS(τ) = ΩT (τ) . (8.104)

and hence ΩT = ΞT . All other elements are now determined by the cocycle condition.

For cocycles in the full modular group there are certain situations when we know that
everything is determined by the generators of the group and the cocycle condition. For
example, if the cocycle is trivial for T and satisfies the correct holomorphic properties for
S then this is enough to prove the cocycle evaluated at every γ ∈ SL2(Z) has the correct
domain. This is the content of the Proposition 14.

8.5 Difference equations and rigidity
All of our examples will be related in some way to q–difference equations. This can be
incorporated into the description of cocycles. This was discussed in [82]. Associated to a q–
difference equation with companion matrix A(x; q), we consider, for N ∈ Z>0, the set of maps
Ω from SL2(Z) to matrix valued meromorphic functions such that Ωγ ∈ GLN(M(C × Cγ))
and, where defined, we have the cocycle condition

Ωγγ′(z; τ) = Ωγ

( z

c′τ + d
;
a′τ + b′

c′τ + d′

)
Ωγ′(z; τ) , (8.105)

along with the q and q̃–difference equations

Ωγ(z + aτ + b; τ) = A
(
e
( z

cτ + d

)
; q̃γ

)
Ω(z; τ)

a−1∏
j=0

A(qje(z); q)−1

Ωγ(z + cτ + d; τ) = Ωγ(z; τ)
c−1∏
j=0

A(qje(z); q)−1 , ,

(8.106)

where
∏

starts on the left and if for n > 0 we have
∏−n−1

j=0 aj =
∏n

j=1 a
−1
−j . In this context,

we have the following proposition, which determines the cocycle from S and T .
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Proposition 14. [82] If ΩS(z; τ) is meromorphic for τ ∈ CS and ΩT (z; τ) = Id, then
Ωγ(z; τ) is meromorphic in Cγ for all γ ∈ SL2(Z).

Proposition 15. If Ω,Ξ are holomorphic and Ωγ(0; 1) = Ξγ(0; 1) for all γ then

Ω = Ξ . (8.107)

Proof. Ωγ(0; τ) and Ξγ(0; τ) define cocycles in the previous sense. Therefore, from Proposi-
tion 13 we see that

Ωγ(0; τ) = Ξγ(0; τ) . (8.108)

For each γ = [a, b; c, d] with c 6= 0, choose τ0 ∈ (R−Q) ∩ Cγ. Then the set

Z + τ0Z (8.109)

is dense in R. Therefore, from the q and q̃–difference equations we see that for w ∈ Z + τ0Z
we have

Ωγ(w; τ0) = Ξγ(w; τ0) (8.110)

and therefore as they are analytic functions in z we see that for all z

Ωγ(z; τ0) = Ξγ(z; τ0) (8.111)

for each τ0 ∈ (R−Q) ∩ Cγ. Therefore, for a fixed z0 we see that for all τ ∈ (R−Q) ∩ Cγ

Ωγ(z0; τ) = Ξγ(z0; τ) (8.112)

and therefore for all τ ∈ Cγ we have

Ωγ(z0; τ) = Ξγ(z0; τ) . (8.113)

Finally, for T we notice again that

ΩTSTS(z; τ + 1)−1ΩS(z; τ) = ΩT (z; τ) . (8.114)

It is interesting as to how many cocycles are associated to a q–difference equation. There
are some strict conditions that extension of τ to Cγ imposes.

Proposition 16. If Ω and Ξ are QM–cocycles associated to a q–difference equation with
companion matrix A then if γ = [a, b; c, d] ∈ SL2(Z) with c 6= 0 then

N∑
j=0

hj(τ)
(
ΩγΞ

−1
γ

)j
= 0 . (8.115)

satisfies an order N polynomial with coefficients holomorphic functions in τ ∈ Cγ.
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Proof. Notice that

Ωγ(z + aτ + b; τ)Ξγ(z + aτ + b; τ)−1 = A
(
e
( z

cτ + d

)
; q̃γ

)
Ωγ(z; τ)Ξγ(z; τ)−1A

(
e
( z

cτ + d

)
; q̃γ

)−1
,

Ωγ(z + cτ + d; τ)Ξγ(z + cτ + d; τ)−1 = Ωγ(z; τ)Ξγ(z; τ)−1 .

(8.116)
Therefore,

det(ΩγΞ
−1
γ − x) =

N∑
j=0

hj(z; τ)xj (8.117)

where hj(z; τ) are elliptic functions and holomorphic for τ ∈ Cγ. Therefore, from Cayley–
Hamilton theorem

N∑
j=0

hj(z; τ)
(
ΩγΞ

−1
γ

)j
= 0 , (8.118)

and they are independent of z from the domain in τ and ellipticity.

Corollary 9. If Ω is a rank one QM–cocycle associated to a first order q–difference equation,

Ωγ(z; τ) = Ξγ(z; τ)h(τ) . (8.119)

We close this section by stating that these QM–cocycles are in a sense the most mysterious
and interesting objects we want to construct. For specific examples relating to quantum
modular forms, these will be conjecturally be related to Borel resummation of their asymp-
totic series discussed in Section 11.1. Their extension properties would then be expected.
However, as this is only conjectural we take a different approach. We will construct these
QM–cocycles using integrals of a special function called the Faddeev quantum dilogarithm.
This is the content of part V.

8.6 Quantum modular forms: looking forward
Using these analytic cocycles we can now give our definition of quantum modular forms.

Definition 22 (Quantum modular form). We say that a function f : h ∪Q ∪ h→ CN is a
quantum modular form with automorphy factor j and QM–cocycle Ω if for γ = [a, b; c, d] ∈
SL2(Z) we have

f
(aτ + b

cτ + d

)
= j(τ ; γ)Ωγ(τ)f(τ) . (8.120)

One could immediately argue that the automorphy factor could be taken into the definition
of the QM–cocycle. However, almost all examples will be associated to one QM–cocycle and
different automorphy factors. For example, this could just be a shift in the weight but it
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could also be more exotic for a fixed function as well, for instance the automorphy factor of
equation (8.23).

This can naturally be extended to functions satisfying q–difference equations.

Definition 23 (Quantum Jacobi form). We say that a function f : C× h ∪Q ∪ h→ CN is
a quantum Jacobi form with companion matrix A, automorphy factor j and QM–cocycle Ω,
if for γ = [a, b; c, d] ∈ SL2(Z) we have

f
( z

cτ + d
;
aτ + b

cτ + d

)
= j(τ ; γ)Ωγ(z; τ)f(z; τ) , (8.121)

and
f(z + τ ; τ) = A(z; τ)f(z; τ) . (8.122)

We will call f simply a quantum modular (Jacobi) form if there exists some cocycle with the
properties required. Moreover, if the function is just defined on h,Q or h we will also refer
to it as a quantum modular form.

Proposition 17. Suppose that Ω is a rank N QM–cocycle and f1, . . . , fN are independent
quantum modular forms for Ω with automorphy factors j1, . . . , jN and g1, . . . , gN is another
set with automorphy factors k1, . . . ,kN . Then

M =
(
f1 · · · fN

)−1 (
g1 · · · gN

)
(8.123)

is a matrix valued modular form with respect to these automorphy factors so thatj1(τ ; γ) · · · 0
: · · · :
0 · · · jN(τ ; γ)

M
(aτ + b

cτ + d

)
= M(τ)

k1(τ ; γ) · · · 0
: · · · :
0 · · · kN(τ ; γ)

 . (8.124)

This shows that over a certain space of modular forms the space of quantum modular forms
with a given cocycle has dimension the same as the rank. If we have a basis of quantum
modular forms in a matrix U with a cocycle Ω so that

U
( z

cτ + d
;
aτ + b

cτ + d

)
= Ωγ(z; τ)U(z; τ)

j1(τ ; γ) · · · 0
: · · · :
0 · · · jN(τ ; γ)

 , (8.125)

then we see thatj1(τ ; γ)−1 · · · 0
: · · · :
0 · · · jN(τ ; γ)−1

 = U
( z

cτ + d
;
aτ + b

cτ + d

)−1

Ωγ(z; τ)U(z; τ) (8.126)
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and this makes it look like Ωγ is equivalent toj1(τ ; γ)−1 · · · 0
: · · · :
0 · · · jN(τ ; γ)−1

 . (8.127)

However, U is not defined at τ ∈ R − Q, which mean that it is not giving a coboundary.
Finally, if we have such a U , then we can compute

U
( z

cτ + d
;
aτ + b

cτ + d

)j1(τ ; γ)−1 · · · 0
: · · · :
0 · · · jN(τ ; γ)−1

U(z; τ)−1 = Ωγ(z; τ) (8.128)

and therefore, see that the LHS while not being defined for τ ∈ R−R∩Cγ it has an analytic
extension.

Remark 27. Instead of just functions from roots of unity to complex numbers, we could
have taken asymptotic series of the kinds described in Section 5.8. These series can then be
acted upon by SL2(Z) and corresponding statements can be made. If one does this with the
asymptotic series, then taking the LHS of equation (8.128) at rationals in Q ∩Cγ gives rise
to convergent series.

With this definition we will now give a few examples of quantum modular forms deferring
their proofs to the next part.

8.7 Rank one Nahm sums are quantum modular forms
For A ∈ Z,

fA,m(q) =
∞∑
k=0

q
A
2
k(k+1)+km

(q; q)k
. (8.129)

we have

FA,m(q) =


fA,m(q)
fA,m+1(q)

:
fA,m+A−1(q)

 . (8.130)

Theorem 5. The function in the upper half plane FA,m(q) is a quantum modular form.

This is proved in Section 10.1. From the proof one will see that this could be extended to a
full matrix valued function, which will be needed in conjectural computations of the Borel
resummations and Stokes constants. However, at rationals this is best done with matrices.
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Recall from Section 4.7, the asymptotics of these Nahm sums at roots of unity had constant
terms for the A roots of

1−Xi = XA
i , (8.131)

we had functions such that for q = e(a/c)

fA,i,m(q) =

∏|c|−1
`=1

(
1− q`

) `
|c|−

1
2√

|c|Xi/(1−Xi) + A|c|

|c|−1∑
r=0

qAr(r+1)/2+rmX
(Ar+m)/|c|
i X

A/2|c|
i∏|c|−1

s=0 (1− qr+s+1X
1/|c|
i )

r+s+1
|c| −

1
2

. (8.132)

We can then define a matrix

FA,m(q) =

 fA,1,m(q) · · · fA,A,m(q)
: · · · :

fA,1,m+A−1(q) · · · fA,A,m+A−1(q)

 . (8.133)

Theorem 6. The function FA,m(q) from Q is a quantum modular form, and in particular,

FA,m(q̃)

e
( VC1,0

denom(x)numer(x)

)
· · · 0

: · · · :

0 · · · e
( VCA,0

denom(x)numer(x)

)
FA,m(q)−1 , (8.134)

extends to a holomorphic function for τ ∈ CS.

This theorem is proved in Section 9.1.

8.8 Invariants of the figure eight knot
Consider the, functions for |q| 6= 1

gm(q) =
∞∑
k=0

(−1)k
qk(k+1)/2+km

(q; q)2
k

,

Gm(q) =
∞∑
k=0

(−1)k
qk(k+1)/2+km

(q; q)2
k

(
m− 2G1(q) +

k∑
`=1

1 + qj

1− qj
)
,

Gm(q) =
∞∑
k=0

(−1)k
qk(k+1)/2+km

(q; q)2
k

(
1

8

(
2m− 4G1(q) + 2

k∑
`=1

1 + qj

1− qj
)2

− 1

24
+

k∑
`=1

q`

(1− q`)2

)
.

(8.135)
Combining these into a matrix we can define

gm(q) =

 gm(q) Gm(q) Gm(q)
gm+1(q) Gm+1(q) Gm+1(q)
gm+2(q) Gm+2(q) Gm+2(q)

 . (8.136)
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We have for q = e(a/c), and

Xj =
1

2
+ (−1)j

√
−3

2
(8.137)

the functions

Ji,m(q) =
∑

k∈Z/cZ

(−1)kqk(k+1)/2+kmX
(k−m)/c
i X

1/2c
i∏N−1

j=0 (1− q1+k+jX
1/c
i )2(1+j+k)/c−1

(8.138)

and additionally take

J0,m(q) =
∞∑
k=0

(−1)kq−k(k+1)/2−km−m(q; q)2
k . (8.139)

Then define

gm(q) =

 J0,m(q) J1,m(q) J2,m(q)
J0,m+1(q) J1,m+1(q) J2,m+1(q)
J0,m+2(q) J1,m+2(q) J2,m+2(q)

 . (8.140)

Finally, take the automorphy factor

j(τ ; γ) =



(cτ + d)−1/2 0 0

0 (cτ + d)1/2 0

0 0 (cτ + d)3/2

 if τ ∈ h ∪ h ,

ε(a, b, c, d)3(cτ + d)3/2 0 0

0 e(λγ(τ)VC1/(2πi)
2) 0

0 0 e(λγ(τ)VC2/(2πi)
2)

 if τ ∈ Q .


(8.141)

Theorem 7. [85, 86, 70] gn is a quantum modular form i.e. there exists a QM–cocycle Ω
such that

gn(q̃γ) = Ωγ(m,n; τ)gm(q)j(τ ; γ) . (8.142)

This result has partially appeared in the literature previously [85, 86, 73, 72, 70]. The final
steps missing in the literature are outlined in Section 9.2 and an associated computation of
a q–difference equation is given in Section 10.2. Importantly, this implies that

gn(q̃γ)j(τ ; γ)−1gm(q)−1 (8.143)

is an analytic function on Cγ. See [86, Fig. 2] for the plots of these functions on the reals.
We won’t recreate them here.

8.9 Invariants of half surgery on the figure eight
Firstly, let

0 = (1−X2)(1−X−1
1 X2)−X1 ,

0 = (1−X2
1 )2 −X2

1X2(1−X−1
1 X2) .

(8.144)
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These have solutions with respect to our generator of the trace field satifying

p(ξ) = ξ7 − ξ6 − 2ξ5 + 6ξ4 − 11ξ3 + 6ξ2 + 3ξ − 1 (8.145)

so that
X1,j = −3 + 11ξj + 20ξ2

j − 15ξ3
j + 6ξ4

j − 2ξ5
j − 4ξ6

j ,

X2,j = −9 + 19ξj + 76ξ2
j − 52ξ3

j + 20ξ4
j − 4ξ5

j − 13ξ6
j .

(8.146)

Then letting

∆ = −257 + 806ξ + 947ξ2 − 749ξ3 + 331ξ4 − 133ξ5 − 213ξ6 , (8.147)

We define functions at roots of unity q = e(a/c)

Z(j)
m (q) =

−i
cε(q)

√
(1−X2

1,j)
2(1−X2,j)(1−X−1

1,jX2,j)

∆

×
∑

k,`∈Z/cZ

qk
2+k`−mk+`X

2k+`−m
c

1 X
k+1
c

2,j

∏c−1
i=0(1− qi+1+`−kX

−1/c
1,j X

1/c
2,j )−(i+1+`−k)/c−1/2∏c−1

i=0(1− qi+1+`X
1/c
2,j )(i+1+`)/c−1/2

∏c−1
i=0(1− qi+1+2kX

2/c
1,j )(i+1+2k)/c−1/2

.

(8.148)

Finally, we take

Z(0)
m (q) =

∑
0≤`≤k

(−1)kq−
1
2
k(k+1)+`(`+1)+mk (q; q)2k+1

(q; q)`(q; q)k−`
. (8.149)

Then for roots of unity q = e(a/c) we define

(Zm(q))i,j = Z
(j−1)
m+i−1(q) . (8.150)

Also define the automorphy factor at roots of unity to be

j(τ ; γ) = diag(ε(γ)2(cτ + d)3/2, e(VC1λγ(τ)/(2πi)2), · · · , e(VC7λγ(τ)/(2πi)2)) . (8.151)

Next define, for |q| 6= 1, k1(q), · · · , k8(q) = 1, 2, 4, 5, 6, 7, 8, 9 if |q| < 1 and k1(q), · · · , k8(q) =
3, 1, 4, 5, 6, 7, 8, 9 if |q| > 1,

(Zm(q))i,j = Z
kj(q)
m+i−1(q) (8.152)

and automorphy factor generated by

j(τ ;T ) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0


, j(τ ;S) = τ 1/2



τ 2−2δ|q|<1 0 0 0 0 0 0 0
0 τ 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


,

(8.153)
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where

Z(1)
m (q) = (q; q)2

∞

∞∑
k,j=0

qk(2k+1)+jk+j−mk−m

(q; q)j(q; q)2k(q; q)k+j

Z(2)
m (q) = (q; q)2

∞

∞∑
k,j=0

qk(2k+1)+jk+j−mk−m

(q; q)j(q; q)2k(q; q)k+j

(
−k − 1

2
+ 2G1(q)−

j∑
n=1

qn

1− qn −
k+j∑
n=1

qn

1− qn

)
,

+ (q; q)2
∞

∞∑
k=0

−1∑
j=−k

qk(2k+1)+jk+j−mk−m(q−1; q−1)−j−1

(q; q)2k(q; q)k+j
,

Z(3)
m (q) = (q; q)2

∞

∞∑
k,j=0

qk(2k+1)+jk+j−mk−m

(q; q)j(q; q)2k(q; q)k+j

×
(

1

2

7k + 2j − 2m− 4G1(q) +

k+j∑
n=j+1

qn

1− qn + 4
2k∑
n=1

qn

1− qn


×
(
k + 1/2− 2G1(q) +

k+j∑
n=1

qn

1− qn +

j∑
n=1

qn

1− qn

)

+ 2G2(q) +
1

2

k+j∑
n=1

qn

(1− qn)2
− 1

2

j∑
n=1

qn

(1− qn)2

)

+ (q; q)2
∞

∞∑
k=0

−1∑
j=−k

qk(2k+1)+jk+j−mk−m(q−1; q−1)−j−1

(q; q)2k(q; q)k+j

×
(

3k + j −m− 3

4
−G1(q) + 2

2k∑
n=1

qn

1− qn +

−j−1∑
n=1

q−n

1− q−n

)
,

Z(4)
m (q) = (q; q)∞(q3/2; q)∞

∞∑
k,j=0

q(2k+1)(2k+2)/2+(k+1/2)j−m(k+1/2)+j−m

(q; q)j(q; q)2k+1(q
3
2 ; q)k+j

,

Z(5)
m (q) = (q; q)∞(−q; q)∞

∞∑
k,j=0

(−1)j+m
qk(2k+1)+jk+j−mk−m

(q; q)j(q; q)2k(−q; q)k+j
,

Z(6)
m (q) = (q; q)∞(−q3/2; q)∞

∞∑
k,j=0

(−1)j+m
q(2k+1)(2k+2)/2+(k+1/2)j−m(k+1/2)+j−m

(q; q)j(q; q)2k+1(−q 3
2 ; q)k+j

,

Z(7)
m (q) = (q; q)∞(q1/2; q)∞

∞∑
k,j=0

q(2k+1)(2k+2)/2+(j−k−1/2)(k+1/2)+(j−k−1/2)−m(k+1/2)−m

(q1/2; q)j−k(q; q)2k+1(q; q)j
,

Z(8)
m (q) = (q; q)∞(−q; q)∞

∞∑
k,j=0

(−1)j+m
qk(2k+1)+(j−k)k+(j−k)−mk−m

(−q; q)j−k(q; q)2k(q; q)j
,

Z(9)
m (q) = (q; q)∞(−q1/2; q)∞

∞∑
k,j=0

(−1)j+m
q(2k+1)(2k+2)/2+(j−k−1/2)(k+1/2)+(j−k−1/2)−m(k+1/2)−m

(−q1/2; q)j−k(q; q)2k+1(q; q)j
.

(8.154)
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τ

<Z0(q̃)j(τ ;S)−1Z−3(q)−1SI(q)
−1

1
16

−2

−1

1

Figure 8.5: Plots of the real part of the first row of the cocycle associated to 41(1, 2). Here
we cut the plot off when it gets close to 0 as there is an exponential singularity there and
the oscillations become large requiring many more data points to see the smooth behaviour.
See the introduction to the thesis for the absolute values as opposed to real part which kills
the oscillation and hence not as pretty.

Theorem 8. Zm(q) is a quantum modular form i.e. there exists a QM–cocycle Ω such that

Zn(q̃γ) = Ωγ(m,n; τ)Zm(q)j(τ ; γ) . (8.155)

This is proved in sections 9.4, 10.3, and 10.4. This implies that

Zn(q̃γ)j(τ ; γ)−1Zm(q)−1 (8.156)

is an analytic function on Cγ. We can make the analogous plots to those found in [86] of
these functions at the positive reals as shown in Figure 8.5. Compare this figure to figure 8.3.
This illustrates the improved perspective from [208] to [86].

8.10 The quantum dilogarithm
To begin with we will describe a version of the Faddeev quantum dilogarithm [58, 59]. See [8,
App. A.] for a good summary. We will see that this function corresponds to a cocycle of the
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Pochhammer symbol associated to the S. In what is now standard notation, this is defined
as

Φb(x) = exp

(∫ i0+∞

i0−∞

e−2ixw

4 sinh(wb) sinh(wb−1)

dw

w

)
=

(e2π(x+cb)b; e(b2))

(e2π(x−cb)b−1 ; e(−b−2))
, (8.157)

where cb = i(b+b−1)/2 and the first expression is valid for |=(x)| < |=(cb)| while the second
for =(b2) > 0. This notation and variables have certain benefits, however we are interested
in modularity and this makes the natural variables

u =
xb

i
and τ = b2 . (8.158)

Then for certain aesthetic reasons it is also helpful to shift the variable u and take the
reciprocal so we will take the function away from the reals

ΦS(u; τ) = exp

(
−
∫
√
τ(i0+R)

e(2u−1−τ)w/τ

4 sinh(w) sinh(w/τ)

dw

w

)
=

(q̃e(u/τ); q̃)∞
(e(u); q)∞

= Φb(iub
−1 − cb)−1 ,

(8.159)

the second formula is defined for |<((z − 1/2 − τ/2)/
√
τ)| < |<((1/2 + τ/2)/

√
τ)| however

this function then has analytic continuation to τ ∈ CS as we will see in Theorem 40. We
also have the reverse equality

Φb(x) = ΦS(−i(x+ cb)b; b2)−1 = ΦS(−ixb + b2/2 + 1/2; b2)−1 . (8.160)

For the logic of this thesis we will take the quotient of two Pochhammers as the initial
definition proving the analytic continuation later. This functional satisfies various important
function equations given in the following proposition.

Proposition 18. We have the following functional equations

ΦS(u+ 1; τ) = (1− e(u/τ))ΦS(u; τ) (8.161)
ΦS(u+ τ ; τ) = (1− e(u))ΦS(u; τ) (8.162)
ΦS(u/τ ; 1/τ) = ΦS(u; τ) . (8.163)

An important observation is that the two q and q̃ difference equations are in a sense uncou-
pled. This leads to the corollary.

Corollary 10.

ΦS(u+mτ + n; τ) = (e(u/τ); q̃−1)n(e(u); q)mΦS(u; τ) . (8.164)
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Figure 8.6: The properties of the Faddeev quantum dilogarithm. Its poles and zeros and its
behaviour at infinity described in Proposition 20.

The structure of the poles and zeros of this function is easy to compute from its product
formula and we find

Proposition 19. The zeros of ΦS(u; τ) are first order and located at

u ∈ Z>0 + τZ>0 (8.165)

while the poles are also first order and located at

u ∈ Z≤0 + τZ≤0 . (8.166)

The poles and zeros are depicted in Figure 8.6. Now we will give a proof of the main theorem
which follows imediately from Faddeev’s original definition.

Theorem A–40. The function ΦS(u; τ) has an analytic continuation to a meromorphic
function for τ ∈ CS.

Proof. From it’s definition this is clear for τ /∈ R>0. Using Theorem 29 we can find an
integral expression for (

e
(
u−1
τ

)
; e
(
− 1
τ

))
∞

(e(u); e(τ))∞
, (8.167)
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when <(τ) > 0. Indeed, using a version of the theorem we can write,

(
e
(
u−1
τ

)
; e
(
− 1
τ

))
∞

(e(u); e(τ))∞
=

1

(e(u); e(τ))−b<(uτ )c
√

1− e(u/τ)

× exp

(
− τ

2πi
Li2

(
e
(u
τ

))
+ iτ

∫ ∞
0

log
(
1− e

(
−ix+ u

τ

))
− log

(
1− e

(
ix+ u

τ

))
1− e(−iτx)

dx

)
.

(8.168)
This equality holds for all <(τ) > 0 and <

(
u
τ

)
/∈ Z. The RHS is an analytic function for all

<(τ) > 0 and <
(
u
τ

)
/∈ Z not just in the upper half plane. Moreover, we claim the function

can be extended to a function for all <(τ) > 0. Notice that we can write

− τ

2πi
Li2

(
e
(u
τ

))
+

1

2
log
(

1− e
(u
τ

))
+ iτ

∫ ∞
0

log
(
1− e

(
−ix+ u

τ

))
− log

(
1− e

(
ix+ u

τ

))
1− e(−iτx)

dx

=
1

2
log
(

1− e
(u
τ

))
+ iτ

∫ ∞
0

log
(

1− e
(
ix+

u

τ

))
+

log
(
1− e

(
−ix+ u

τ

))
− log

(
1− e

(
ix+ u

τ

))
1− e(−iτx)

dx

= iτ

∫ i0+∞

i0−∞

log
(
1− e

(
−ix+ u

τ

))
1− e(−iτx)

dx .

(8.169)
Notice that log

(
1− e

(
−ix+ u

τ

))
has branch points at x = −iu

τ
− im. Therefore, we see

that the integral jumps by the keyhole integral around the branch cut as −im − iu
τ
crosses

the real line. The keyhole integral can be computed explicitly as

log (1− e (mτ + u)) . (8.170)

This cancels exactly with the discontinuities of

1

(e(u); e(τ))−b<(uτ )c
. (8.171)

So the RHS of Equation (8.168) has two sided limits for <
(
u
τ

)
∈ Z which agree and there-

fore the RHS defines a continuous function for all <(τ) > 0. Noting that the function is
holomorphic away from the lines <

(
u
τ

)
∈ Z we find that this extension is holomorphic for

<(τ) > 0.
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A similar computation shows that for τ ∈ h with <(τ) > 0 we can find that

(e(u− τ); e(−τ))∞(
e
(
u
τ

)
; e
(

1
τ

))
∞

=
1

(e(u); e(τ))−b<(uτ )c
√

1− e(u/τ)

× exp

(
− τ

2πi
Li2

(
e
(u
τ

))
+ iτ

∫ ∞
0

log
(
1− e

(
−ix+ u

τ

))
− log

(
1− e

(
ix+ u

τ

))
1− e(−iτx)

dx

)
.

(8.172)
With these identities and the fact the poles in u do not accumulate as τ tends to R>0 the
analytic extension and meromorphic properties are manifest.

These identities in this form can be checked explicitly with Code 28. The final properties
that we need, which will be important for the next part, are related to the behaviour as u
tends to infinity.

Proposition 20. We have as u→∞

ΦS(u; τ) ∼


1 for 0 < =(u) and 0 < =(u/τ)

θ(e(u/τ); q̃)(q̃; q̃)−1
∞ for 0 < =(u) and 0 > =(u/τ)

(q; q)∞θ(e(u); q)−1 for 0 > =(u) and 0 < =(u/τ)
−iq1/12q̃−1/12e(u2/2τ + u/2 + u/2τ) for 0 > =(u) and 0 > =(u/τ)


(8.173)

Before proceeding with the proof notice that the θ functions only appear in cases where
=(τ) /∈ R>0 so they are convergent. The various regions is depicted for =(τ) > 0 in Figure 8.6.

Proof of Proposition 20. Notice that from Corollary 10, we see that for u in some compact
every other value is determined by the asymptotic in m,n of

ΦS(u+mτ + n) = (e(u/τ); q̃−1)n(e(u); q)mΦS(u; τ) . (8.174)

We see that there are essentially four cases. The first for =(τ) > 0 is m and n tend to
infinity or 0 < arg(u) < arg(τ) and for =(τ) < 0 is m and n tend to negative infinity or
arg(−τ) < arg(u) < π. This has for =(τ) > 0

ΦS(u+mτ + n) ∼ (−1)nq̃−n(n−1)/2e(nu/τ)(e(−u/τ); q̃)∞(e(u); q)∞ΦS(u; τ)

=
θ(q̃−ne(u/τ); q̃)

(q̃; q̃)∞
=

θ(e((u+mτ + n)/τ); q̃)

(q̃; q̃)∞
,

(8.175)

while for =(τ) < 0 this has (noting that n < 0)

ΦS(u+mτ + n) ∼ 1

(−1)nq̃n(n−1)/2e(−nu/τ)(q̃−1e(−u/τ); q̃−1)∞(q−1e(u); q−1)∞
ΦS(u; τ)

=
(q̃−1; q̃−1)∞

θ(q̃ne(−u/τ); q̃−1)
=

θ(e((u+mτ + n)/τ); q̃)

(q̃; q̃)∞
.

(8.176)
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Secondly, for =(τ) > 0 we can have m tend to infinity and n negative infinity or we have
arg(τ) < arg(u) < π and for =(τ) < 0 we can have n tend to infinity and m negative infinity
or we have 0 < arg(u) < arg(−τ). So for =(τ) > 0

ΦS(u+mτ + n) ∼ (e(u); q)∞
(q̃e(u/τ); q̃)∞

ΦS(u; τ) = 1 , (8.177)

and for =(τ) < 0

ΦS(u+mτ + n) ∼ (e(u/τ); q̃−1)∞
(e(u)q−1; q−1)∞

ΦS(u; τ) = 1 , (8.178)

while for τ ∈ R>0 we can use the final expression of equation (8.169) to see that for =(u) > 0
the integral tends to 0.

The third for =(τ) > 0 is m and n tend to negative infinity or −π < arg(u) < arg(−τ) and
for =(τ) < 0 is m and n tend to infinity or arg(τ) < arg(u) < 0. So for =(τ) > 0

ΦS(u+mτ + n) ∼ 1

(q̃e(u/τ); q̃)∞(−1)mqm(m+1)/2e(mu)(qe(u); q)∞
ΦS(u; τ)

=
(q; q)∞

θ(qme(u); q)
=

(q; q)∞
θ(e(u+mτ + n); q)

,

(8.179)

while for =(τ) < 0

ΦS(u+mτ + n) ∼ (e(u/τ); q̃−1)∞(−1)mqm(m−1)/2e(mu)(e(−u); q−1)∞ΦS(u; τ)

=
θ(qme(−u); q−1)

(q−1; q−1)∞
=

(q; q)∞
θ(e(u+mτ + n); q)

.
(8.180)

Finally, for =(τ) > 0 we can have n tend to infinity and m negative infinity or we have
arg(−τ) < arg(u) < 0 and for =(τ) < 0 we can have m tend to infinity and n negative
infinity or we have −π < arg(u) < arg(τ). So for =(τ) > 0

ΦS(u+mτ + n) ∼ (−1)nq̃n(n−1)/2e(nu/τ)(e(−u/τ); q̃)∞
(−1)mqm(m−1)/2e(−mu)(qe(−u); q)∞

ΦS(u; τ)

=
θ(q̃−ne(u/τ); q̃)

θ(q−me(−u); q)

(q; q)∞
(q̃; q̃)∞

=
θ(e((u+mτ + n)/τ); q̃)

θ(q−1e(u+mτ + n); q)

= −e(−u−mτ − n)
θ(e((u+mτ + n)/τ); q̃)

θ(e(u+mτ + n); q)

(q; q)∞
(q̃; q̃)∞

=
−e(−u−mτ − n)

√
τe
(

(u+n−1/2+τ(m+1/2))2

2τ
− 1

8

)
√
τe(−1/8)q1/24q̃−1/24

= e

(
(u+ n− 1/2 + τ(m− 1/2))2

2τ
− τ

24
− 1

24τ

)
,

(8.181)
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and for =(τ) < 0

ΦS(u+mτ + n) ∼ (−1)mqm(m−1)/2e(mu)(e(−u); q−1)∞

(−1)nq̃n(n−1)/2e(−nu/τ)(q̃−1e(−u/τ); q̃−1)∞
ΦS(u; τ)

=
θ(qme(u); q−1)(q̃−1; q̃−1)∞

θ(q̃ne(−u/τ); q̃−1)(q−1; q−1)∞
=

θ(e(u+mτ + n); q−1)(q̃−1; q̃−1)∞
θ(e(−(u+mτ + n)/τ); q̃−1)(q−1; q−1)∞

=

√−τe(−1/8)q−1/24q̃1/24

√−τe
(
−(u+n−1/2+τ(m−1/2))2

2τ − 1
8

)
= e

(
(u+ n− 1/2 + τ(m− 1/2))2

2τ
− τ

24
− 1

24τ

)
,

(8.182)
while for τ ∈ R>0 the using equation (8.168) and assuming for simplicity that 0 < <(u/τ) < 1
then we see that the integral

iτ

∫ ∞
0

log
(
1− e

(
−ix+ u

τ

))
− log

(
1− e

(
ix+ u

τ

))
1− e(−iτx)

dx ∼ 2πi

12τ
(8.183)

while √
1− e(u/τ) ∼ −ie(u/2τ) (8.184)

and using equation (4.35)

Li2(e(u/τ)) ∼ −π
2

6
+ 2π2(u/τ − 1/2)2 (8.185)

Combining these into equation (8.168) gives the result. For other u unrestricted the argument
is similar and one just needs to keep track of the branching.

We can use this to prove the agreement with the original formula of the Faddeev simply
for the logical consistency of this thesis. Indeed, Faddeev’s formula will be useful later in
Section 8.12.

Proposition 21. We have for |<((u− 1/2− τ/2)/
√
τ)| < |<((1/2 + τ/2)/

√
τ)|

ΦS(u; τ) = exp

(
−
∫
√
τ(i0+R)

e(2u−1−τ)w/τ

4 sinh(w) sinh(w/τ)

dw

w

)
. (8.186)

Proof. First let and notice that

f(u; τ) = exp

(
−
∫
√
τ(i0+R)

e(2(u+1)−1−τ)w/τ

4 sinh(w) sinh(w/τ)

dw

w

)
= exp

(
−
∫
√
τ(i0+R)

exp(uw/τ)

(1− exp(w/τ))(1− exp(w))

dw

w

)
.

(8.187)
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For =(u) > 0 and =(u/τ) > 0 we can push the contour to infinity and collect the residues
to find that for τ /∈ R

f(u; τ) = exp

( ∞∑
k=1

e(ku/τ)

(1− q̃−k)k +
∞∑
`=1

e(`u)

(1− q`)`

)
. (8.188)

Then notice that for |=(τ)| > 0 using Lemma 3 and analytic continuation we have

f(u; τ) = exp

( ∞∑
k=1

q̃ke(ku/τ)

(q̃k − 1)k
−
∞∑
`=1

e(`u)

(q` − 1)`

)
= ΦS(u; τ) , (8.189)

and for |=(τ)| < 0 using Lemma 3 and analytic continuation again we have

f(u; τ) = exp

(
−
∞∑
k=1

e(ku/τ)

(q̃−k − 1)k
+
∞∑
`=1

q−`e(`u)

(q−` − 1)`

)
= ΦS(u; τ) , (8.190)

Then finally using the analytic continuation to τ ∈ R>0 completes the proof.

We will close this section noting some important equations satified by the Faddeev quantum
dilogarithm. Firstly, from the modularity of the θ–function from equation 7.68 and the
Jacobi triple product 30 we have the inversion relation.

Proposition 22. [8, Eq. 47] We have the identity

ΦS(τ + u; τ)ΦS(1− u; τ) = e

(
u2

2τ
− 1

4
+
u

2
− u

2τ

)
q

1
12 q̃−

1
12 = q−1/24q̃1/24e

((u− 1
2 + τ

2 )2

2τ

)
(8.191)

The Faddeev quantum dilogarithm also satisfies some integral equations analogous to the
Pochhammer symbol given in Lemma 7.

Proposition 23. [8, Sec. 13.2] We have the following equalities so that when τ ∈ h then
these can be written∫

i
√
τR−1/2−τ/2

e(wx/τ)

ΦS(x+ τ + 1; τ)
dx = τ

(q; q)∞
(q̃; q̃)∞

ΦS(w; τ) , (8.192)

∫
i
√
τR−1/2−τ/2

e(x(x+ 1 + τ)/2τ + wx/τ)

ΦS(x+ τ + 1; τ)
dx = τ

(q; q)∞
(q̃; q̃)∞

ΦS(w + τ + 1; τ)−1 . (8.193)
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8.11 The cocycle of the Pochhammer symbol

The cocycle of the Pochhammer symbol is a function defined for all γ = [a, b; c, d] ∈ SL2(Z),
u ∈ C and τ ∈ C′γ. This cocycle is related to the modular quantum dilogarithm of [76]. We
can express this function away from the reals by

Φγ(u; τ) =

(
e
(
aτ+b
cτ+d

)
e
(

u
cτ+d

)
; e
(
aτ+b
cτ+d

))
∞

(e (u) ; e (τ))∞
=

(
q̃γe
(

u
cτ+d

)
; q̃γ
)
∞

(e (u) ; q)∞
, (8.194)

where as always we use
(t; q−1)∞ = (qt; q)−1

∞ . (8.195)

This satisfies difference equations analogous to those satisfied by Faddeev’s quantum dilog-
arithm.

Proposition 24. We have the following functional equations

Φγ(u+ aτ + b; τ) =
(e(u); e(τ))a

1− e
(

u
cτ+d

)Φγ(u; τ) (8.196)

Φγ(u+ cτ + d; τ) = (e(u); e(τ))cΦγ(u; τ) (8.197)

Φ[a,b;c,d]

( u

cτ + a
;−dτ + b

cτ + a

)
= Φ[d,b;c,a](u; τ) (8.198)

Φ[a,b;c,d][a′,b′;c′,d′](u; τ) = Φ[a,b;c,d]

( u

c′τ + d′
;
a′τ + b′

c′τ + d′

)
Φ[a′,b′;c′,d′](u; τ) (8.199)

We will show that this extends to a holomorphic function on γ ∈ SL2(Z), u ∈ C and τ ∈ C′γ.
The fact that Φγ(u; τ) extends to τ ∈ C′γ was first done in [58] in slightly less generality.
This is equivalent to showing that (x; q)∞ is a quantum Jacobi form.

The proof that the Pochhammer is a quantum Jacobi form is done via a modification of
the Abel-Plana summation formula. Indeed this was already used in Section 4.4. A similar
argument was used in [29] to prove a modularity property of finite Pochhammers at roots of
unity.

Theorem A–41. Φγ(u; τ) is holomorphic on C′γ. This is equivalent to proving that (e(u); e(τ))∞
is a quantum Jacobi form with cocycle Φγ(u; τ).

This follows from Proposition 14 from [82]. We give the proof explicitly here as well.

Proof. Firstly, notice that we can write

aτ + b

cτ + d
=

acτ + bc

c2τ + cd
=

acτ + ad− 1

c2τ + cd
=

a

c
− 1

c2τ + cd
(8.200)
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Therefore
aτ + b

cτ + d
(cn+ r) = an− n

cτ + d
+
a

c
r − r

c

1

cτ + d
. (8.201)

Let γ = [a, b; c, d] ∈ Γ. Let [ar]c ∈ {0, |c| − 1} with [ar]c = ar (Mod c) where we note that a
is invertible modulo c. Notice that(
e
(

u
cτ+d

)
; e
(
aτ+b
cτ+d

))
∞

(e(u); e(τ))∞
=

|c|−1∏
r=0

(
e
(
aτ+b
cτ+dr + u

cτ+d

)
; e
(
aτ+b
cτ+dc

))
∞

(e([ar]cτ + u); e(cτ))∞

=

|c|−1∏
r=0

(
e
(
a
c r − r

c
1

cτ+d + u
cτ+d

)
; e
(
− 1
cτ+d

))
∞

(e([ar]cτ + u); e(cτ + d))∞
=

|c|−1∏
r=0

(
e
(

[ar]c
c − r

c
1

cτ+d + u
cτ+d

)
; e
(
− 1
cτ+d

))
∞

(e([ar]cτ + u); e(cτ + d))∞

=

|c|−1∏
r=0

(
e
(

[ar]ccτ+[ar]cd−r
c(cτ+d) + u

cτ+d

)
; e
(
− 1
cτ+d

))
∞

(e([ar]cτ + u); e(cτ + d))∞

=

|c|−1∏
r=0

(
e
(

[ar]cτ+d([ar]c−ar)/c+b+u
cτ+d

)
; e
(
− 1
cτ+d

))
∞

(e([ar]cτ + d([ar]c − ar)/c+ b+ u); e(cτ + d))∞

=

|c|−1∏
r=0

ΦS([ar]cτ + d([ar]c − ar)/c+ b+ u; cτ + d)

(8.202)
Given that ΦS(u; cτ + d) is a holomorphic function for < (cτ + d) ∈ CS from Theorem 40.
Notice that this is equivalent to τ ∈ C′γ.

8.12 The quantum dilogarithm at rationals

We have seen previously that the Faddeev quantum dilogarithm factors into a product of
two Pochhammer symbols evaluated at q and q̃ or q−1 and q̃−1. This factorisation gives an
efficient formula when τ /∈ R. It is natural to wonder whether a similar factorisation take
place for τ ∈ Q>0. Indeed, the values at τ ∈ R>0 −Q>0 are then all that is left and remain
the mysterious glue that provide some of the depth captured by quantum modular forms. We
will see that this is indeed true and related to the asymptotics of the Pochhammer symbol
studied in Section 4.3. Firstly, we introduce an important function needed for the evlaution.

Definition 24. We define the cyclic dilogarithm to be

DM(x; q) =
M−1∏
j=1

(1− qjx)
j
M . (8.203)
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As always we take the principle branch of the roots. Notice that2

DM(qx; q) =
M∏
j=1

(1− qjx)
j−1
M =

1− x
(1− xM)

1
M

DM(x; q) (8.204)

Using this function we have the following formula.

Theorem A–42. [72, Thm. 1.9] For τ = N/M ∈ Q we have

ΦS(u; τ) = exp
( 1

2πiNM
Li2(e(Mu))

)
(1− e(Mu))

u
N
−1DN(e(u/τ); q̃−1)DM(e(u); q)

= exp
( 1

2πiNM
Li2(e(Mu))

)
(1− e(Mu))

u
N

N−1∏
j=0

(1− q̃−je(u/τ))
j
N
− 1

2

M−1∏
j=0

(1− qje(u))
j
M
− 1

2

(8.205)

Proof. Let τ = N/M ∈ Q, so qM = 1 and q̃N = 1. Then notice that for =(u) > 0 again
pushing the contour to infinity and collecting the residues

exp

(
−
∫
√
τ(i0+R)

exp(uw/τ)

(1− exp(w/τ))(1− exp(w))

dw

w

)
= exp

(
−
∞∑
k=1

e(Mku)

Nk

(
u− 1

2πiMk
− 1

2
− τ

2

)
+
∞∑
k=0

N−1∑
n=1

e((n+Nk)u/τ)

(1− q̃−(n+Nk))(n+Nk)
+
∞∑
`=0

M−1∑
m=1

e((m+M`)u)

(1− q(m+M`))(m+M`)

)
= exp

(
1

2πiNM

∞∑
k=1

e(Mu)k

k2
− 1

N

(
u− 1

2
− τ

2

) ∞∑
k=1

e(Mu)k

k

− 1

N

∞∑
k=0

N−1∑
n=1

e((n+Nk)u/τ)

n+Nk

(N − 1)q̃−n−Nk −N + q̃−n−Nk

(1− q̃−n−Nk)2

− 1

M

∞∑
`=0

M−1∑
m=1

e((m+M`)u)

m+M`

(M − 1)q(m+M`) −M + qm+M`

(1− qm+M`)2

)
(8.206)

2We note that log(1−xN ) =
∑N

k=1 log(1−e(k/N)x) which can be proved noting that they are holomorphic
and agree near x = 0 and that they have the same branch cuts.



334 CHAPTER 8. QUANTUM MODULAR FORMS

= exp

(
1

2πiNM
Li2(e(Mu)) +

( u
N
− 1
)

log(1− e(Mu))

− 1

N

∞∑
k=1

e(ku/τ)

k

N−1∑
n=1

nq̃−kn − 1

M

∞∑
`=1

e(`u)

`

M−1∑
m=1

mq`m
)

= exp

(
1

2πiNM
Li2(e(Mu)) +

( u
N
− 1
)

log(1− e(Mu))

+
N−1∑
n=1

n

N
log(1− q̃−ne(u/τ))−

M−1∑
m=1

m

M
log(1− qme(u))

)
(8.207)

The function in the final line extends to an analytic function for u ∈ C − (Z/M + iR<0)
and therefore as ΦS extends to all C with poles contained in Z/M we see that the functions
agree.

This theorem is numerically verified in Code 29. Notice that

Li2(z) + log(z) log(1− z) =
π2

6
− Li2(1− z) . (8.208)

Therefore, on e(Mu) ∈ C− R≤0 − R≥1 we have

ΦS(u; τ) = exp
( 1

2πiNM
Li2(1− e(Mu))− 2πi

24NM

)N−1∏
j=0

(1− q̃−je(u/τ))
j
N
− 1

2

M−1∏
j=0

(1− qje(u))
j
M
− 1

2

(8.209)
Finally, we remark the following consequence on the q and q̃ difference equations when τ ∈ Q.

Corollary 11. If τ = N/M ∈ Q then we find that

Φ(u+N ; τ) = Φ(u+Mτ ; τ) = (1− e(Nu/τ))Φ(u; τ) = (1− e(Mu))Φ(u; τ) , (8.210)

and
ΦS(u+mτ + n; τ) = exp

( 1

2πiNM
Li2(e(Mu))

)
(1− e(Mu))

u
N

×
N−1∏
j=0

(1− q̃−j−ne(u/τ))
j+n
N
− 1

2

M−1∏
j=0

(1− qj+me(u))
j+m
M
− 1

2 .
(8.211)
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An invitation to state integrals

State integrals originally arose as an attempt to defined mathematically SL2(C) Chern–
Simons theory [98]. However, they were then shown to factorise both as q–series [73] and as
functions from roots of unity [72] without necessary regard for three–manifolds. This was
then realised to give rise to proofs of a refined version of quantum modularity [85, 86]. They
could seem complicated at first glance but they naturally appear as a continuous version
of q–hypergeometric sums. The Pochhammer symbol is replaced by the Faddeev quantum
dilogarithm, which is itself a cocycle associated to the Pochhammer. The factorisation
into functions from roots of unity and q–series can then be computed with simple complex
analysis. This means that for a larger class of examples there is a clear constructible method
of proving a version of quantum modularity, which I hope to convey in this section. Finally,
certain state integrals seem to numerically agree with Borel resummation of asymptotic
series coming from q–hypergeometric functions. These numerically based conjectures, along
with some basic structural conjectures, can then be used to give conjectural formulae for
generating series of Stokes constants, which will be discussed in some simple examples.

Before, exploring state integrals more generally I will introduce an example that every un-
dergraduate knowns. Indeed, the simplest state integral is just a Gaussian integral∫

R
e
( z2

2τ

)
dz = e(1/8)

√
τ . (8.212)

This integral with the contour above is convergent for =(1/τ) > 0. However, altering the
angle of the contour changes this range of convergence so that for any argument of τ we can
find a convergent integral. This integral can be “factorised” when τ ∈ h as a product of q
and q̃ series. Indeed, the modularity of the θ function implies that for ϑ00(q) = θ(−q−1/2; q)
we have

i ϑ00(q̃)ϑ00(q)−1 = e(1/8)
√
τ =

∫
R
e
( z2

2τ

)
dz . (8.213)

In fact, the proof given in Section 7.2 of the modularity of the θ–function uses Poisson
summation of Theorem 26, which exactly involves the evaluation of the Gaussian integral.
This factorisation generalises but will be more complicated than just Poisson summation in
general. Regardless, the fact that the Gaussian integral can easily be seen to extend to an
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analytic function when τ ∈ C−R≤0 gives a somewhat redundant proof that the quotient of
the two θ functions extends to an analytic function. We can go further than this. We can
also factorise this integral at rational numbers. In particular, for τ ∈ Q letting

ϑ00(τ) =
1√

denom(τ)

∑
k∈Z/denom(τ)Z

qk
2/2−k denom(τ)/2 (8.214)

we see that

√
τ e
( 1

8 numer(x)denom(x)

)
ϑ00(q̃)ϑ00(q)−1 = e(1/8)

√
τ =

∫
R
e
( z2

2τ

)
dz (8.215)

Therefore, we see that the quotient of these two Gauss sums with the tweaking also extends
to an analytic function. Not only do the quotient of θ–functions and the tweaked quotient
of Gauss sums extend to analytic functions, they extend to the same analytic function. This
is the basic argument for proving quantum modularity and it will generalise to interesting
examples.

After the Gaussian integral the next simplest example is given by the Mordell integral,

1

2

∫ ∞
−∞

e(x2τ/2 + ixz)

cosh(πx)
dx = −i

∫
iR

e(−x2τ/2 + x(z + 1/2))

1− e(x)
dx . (8.216)

This was used by Zwegers in his description of mock modular forms [211]. This integral
factorises in the upper half plane as a difference of Appell–Lerch sums given in Theorem 38.
However, this also factorises in the lower half plane. Indeed, by shifting the contour with
the argument of τ , the Mordell integral can be used to define a holomorphic function in CS.
Letting

ϑ(x; q) =
∞∑
k=0

(−1)kq−k(k+1)/2xk , (8.217)

the Mordell integral in the lower half plane is given by√
i

τ
e
( z2

2τ

)
e
( z

2τ

)
q̃−

1
8ϑ
(z
τ

;−1

τ

)
+ e
(z

2

)
q−

1
8ϑ(z; τ) , (8.218)

and the proof is analogous to that in the upper half plane with the addition of checking
boundary conditions as z and z/τ map to i∞. Finally, this also factorises at rations described
in Section 9.

As mentioned, state integrals for this thesis are an integral analogue of q–hypergeometric
functions. These will roughly be integrals of the form∫

· · ·
∫

e(Q(z)/2τ + µ(z)/τ)
∏
j

ΦS(λj(z); τ)±dz (8.219)
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Figure 8.7: The contour Cτ used for state integrals along with the usual poles and zeros of
the integrand.

where λj, µ(z) are some linear forms, Q is a quadratic form and the integrals are performed
over some infinite contour. Indeed, when it makes sense this integral will be related to the
q–hypergeometric sum ∑

k

qQ(k)+µ(k)
∏
j

(q; q)±λj(k) . (8.220)

State integrals naturally satisfy an uncoupled system of q and q̃ difference equations and
they behave like bilinear combinations of q–hypergeometric functions with q̃–hypergeometric
functions. Moreover, they are defined for τ ∈ CS. In the next sections, showing that they
are bilinear combinations in the examples of interest will be the main content. Indeed, this
is the main tool used to prove quantum modularity in examples. I want to stress that it is
quite computational, however, it is all relatively simple complex analysis.

Finally, these state integrals with the notation of this these involve slightly more complicated
contours than in previous work [8, 73]. To fix this we take the contour Cτ = i

√
τR − √τε

for some small ε ∈ R>0 depicted in Figure 8.7, which includes also the poles and zeros of
ΦS(z + 1 + τ ; τ)−1.





Chapter 9

Factorisation of state integrals at
rationals

To compute factorisations at rational numbers there is one fundamental tool. This is a
simple lemma from complex analysis which has beautiful consequences. This lemma gives
residue formulae for state integrals in terms of points on the characteristic variety. This
then relates back to the points of stationary phase. This has similar consequences as the
Duistermaat–Heckman theorem as interpreted by Atiyah and Bott so that the stationary
phase gives exact results.

Lemma 21 (Fundamental lemma). [72, Lem. 2.1] If U ⊆ C is open, U + a = U and
f : U → C is an analytic function such that for

g(z) =
f(z + a)

f(z)
(9.1)

we have
g(z + a) = g(z) , (9.2)

then if γ is a contour such that g(z) 6= 1 on γ then∫
γ

f(z) dz =
(∫

γ

−
∫
γ+a

) f(z)

1− g(z)
dz . (9.3)

Proof.(∫
γ

−
∫
γ+a

) f(z)

1− g(z)
dz =

∫
γ

f(z)

1− g(z)
dz −

∫
γ+a

f(z)

1− g(z)
dz

=

∫
γ

f(z)

1− g(z)
dz −

∫
γ

f(z + a)

1− g(z)
dz =

∫
γ

f(z)− f(z + a)

1− g(z)
dz =

∫
γ

f(z) dz .

(9.4)
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We can use this to generalise to the analogous statement for integrals of many variables.

Corollary 12. Suppose that a ∈ C×, U ⊂ C is open, Un + aZn = Un, γ ⊆ U a contour,
f : U → C is an analytic function such that for some a ∈ C× and all j = 1, . . . n the
functions

gj(z) =
f(z1, . . . , zj + a, . . . , zn)

f(z1, . . . , zn)
(9.5)

are satisfy
gj(z + aZ) = gj(z) (9.6)

and gj(z) 6= 1 on γn, then∫
γ

· · ·
∫
γ

f(z1, . . . , zn) dz1 . . . dzn

=

(∫
γ

−
∫
a+γ

)
· · ·
(∫

γ

−
∫
a+γ

)
f(z) dz1 . . . dzn

(1− g1(z)) . . . (1− gn(z))
.

(9.7)

Proof. Note that when n = 1 is the previous Lemma 21. So suppose that this is true to
order n− 1. Then we find that∫

γ

· · ·
∫
γ

f(z) dz1 . . . dzn−1

=

(∫
γ

−
∫
a+γ

)
· · ·
(∫

γ

−
∫
a+γ

)
f(z) dz1 . . . dzn−1

(1− g1(z)) . . . (1− gn−1(z))
.

(9.8)

Therefore, applying the n = 1 case we find∫
γ

· · ·
∫
γ

∫
γ

f(z) dz1 . . . dzn−1dzn

=

(∫
γ

−
∫
a+γ

)
· · ·
(∫

γ

−
∫
a+γ

)∫
γ

f(z) dz1 . . . dzn−1dzn
(1− g1(z)) . . . (1− gn−1(z))

=

(∫
γ

−
∫
a+γ

)
. . .

(∫
γ

−
∫
a+γ

)
f(z) dz1 . . . dzn−1dzn

(1− g1(z)) . . . (1− gn−1(z))

× 1

1− f(z1,...,zn+a)(1−g1(z))...(1−gn−1(z))
(1−g1(z1,...,zn−1,zn+a))...(1−gn−1(z1,...,zn−1,zn+a))f(z)

=

(∫
γ

−
∫
a+γ

)
. . .

(∫
γ

−
∫
a+γ

)
f(z) dz1 . . . dzn−1dzn

(1− g1(z)) . . . (1− gn−1(z))(1− gn(z))
.

(9.9)

Therefore, by induction the result follows.
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Figure 9.1: The affect of the fundamental lemma on state integrals.

The fundamental lemma has a beautiful effect on the pictures of the contours we wish to
integrate as shown in Figure 9.1. As a simple warm up, we can apply this method to calculate
the Mordell integral at rationals. We will calculate∫

Cτ

e(−z(z + 1 + τ)/2τ + zu/τ))

1− e(z/τ)
dz . (9.10)

Suppose that τ = N/M ∈ Q>0. Then we can use the fundamental lemma to factorise this
state integral. Indeed, if

f(z) =
e(−z(z + 1 + τ)/2τ + zu/τ)

1− e(z/τ)
(9.11)

then1

f(z +N)

f(z)
= −e(Mu−Mz) =

f(z)

f(z −N)
. (9.12)

Therefore,∫
Cτ

e(−z(z + 1 + τ)/2τ + zu/τ))

1− e(z/τ)
dz

=
(∫
Cτ
−
∫
Cτ+N

)e(−z(z + 1 + τ)/2τ + zu/τ))

1− e(z/τ)

1

1 + e(Mu−Mz)
dz .

(9.13)

1This follows as out of N , M and NM there is either one or three odd numbers as N and M can’t both
be even.
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Therefore, we see that we have poles at z ∈ τZ and z ∈ u+ 1
M

(Z + 1
2
), which gives

2πiResz=kτ
e(−z(z + 1 + τ)/2τ + zu/τ))

1− e(z/τ)

1

1 + e(Mu−Mz)
dz

= −τ (−1)kq−k(k+1)/2e(ku)

1 + e(Mu)
.

(9.14)

while

2πiResz=u+`/M+1/2M
e(−z(z + 1 + τ)/2τ + zu/τ))

1− e(z/τ)

1

1 + e(Mu−Mz)
dz

=
−1

M

e(u(u− 1− τ)/2τ + `(`+N +M + 1)/2NM +M/4 +N/4 +NM/8

1− e(u/τ + `/N + 1/2N)
.

(9.15)

Then for the last sum we can use the Chinese remainder theorem to write the sum
∑

`∈Z/NMZ

−1

M

e(u(u− 1− τ)/2τ + `(` +N +M + 1)/2NM +M/4 +N/4 +NM/8)

1− e(u/τ + `/N + 1/2N)

=
∑

k∈Z/MZ

∑
`∈Z/NZ

1

M

(−1)kqk(k+1)/2+k/N (−1)`q̃−`(`+1)/2−`/Me(u(u− 1− τ)/2τ +M/4 +N/4 +NM/8)

1− q̃−`e(u/τ + 1/2N)

=
√
τe(u(u− 1− τ)/2τ +NM/8)

∑
k∈Z/MZ

(−1)kqk(k+1)/2+k/2M+1/4M

√
M

∑
`∈Z/NZ

(−1)`q̃−`(`+1)/2−`/2N−1/4N

√
N(1− q̃−`e(u/τ + 1/2N))

.

(9.16)

9.1 The case of Nahm sums
Proof of Theorem 6 for A = 4. Consider the following state integral∫

Cτ

e(2z2/τ + uz/τ)

ΦS(z; τ)
. (9.17)

Suppose that τ = N/M ∈ Q>0. Then we can use the fundamental lemma to factorise this
state integral. Indeed, if

f(z) =
e(2z2/τ + uz/τ)

ΦS(z; τ)
(9.18)

then
f(z +N)

f(z)
=

e(4Mz + uM)

(1− e(Mz))
=

f(z)

f(z −N)
. (9.19)

Therefore,∫
Cτ

e(2z2/τ + uz/τ)

ΦS(z; τ)
=
(∫
Cτ
−
∫
Cτ+N

)e(2z2/τ + uz/τ)

ΦS(z; τ)

1

1− e(4Mz+uM)
(1−e(Mz))

dz

=
(∫
Cτ
−
∫
Cτ+N

)e(2z2/τ + uz/τ)

ΦS(z; τ)

1− e(Mz)

1− e(Mz)− e(4Mz + uM)
dz

(9.20)
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We see that the simple zeros of ΦS(z; τ) cancel with the zeros of 1 − e(Mz) and therefore
in this strip enclosed by the contour we see that all the poles come from solutions to the
equation

1− e(Mz) = e(4Mz + uM) , (9.21)

which is the Nahm equation (4.106), which determined the critical points with which we
applied stationary phase. Firstly, lets set u ∈ Z + τZ so that the equation becomes

1− e(Mz) = e(4Mz) , (9.22)

This has the four solutions for e(Mz) given by Xi from Example 39. Therefore, we see that
the residues that contribute are given by the points z = 1

M
xi,k such that 0 < <(z) ≤ N .

Therefore, let us calculate the residue at one of these points. We have

2πiResz= 1
M
xi,k

e(2z2/τ + uz/τ)

ΦS(z; τ)

1− e(Mz)

1− e(Mz)− e(4Mz + uM)
dz

= 2πiResz=0

e(2z2/τ + 4zxi,k/N + 2x2
i,k/MN + uxi,k/N + uz/τ)

ΦS(xi,k/M + z; τ)

× 1−Xie(Mz)

1−Xie(Mz)−X4
i e(4Mz + uM)

dz

=
e(2x2

i,k/MN + uxi,k/N)

ΦS(xi,k/M ; τ)

1−Xi

−MXi − 4MX4
i e(uM)

=
e(2x2

i,k/MN + uxi,k/N)

exp
(

1
2πiNM

Li2(Xi)
)
(1−Xi)

xi,k
MN
−1DN(e(xi,k/N); q̃−1)DM(e(xi,k/M); q)

× 1−Xi

−MXi − 4MX4
i e(uM)

(9.23)

We will break the simplification down into pieces. First notice that from equation (4.120)
we have 1

2πi
log(1−Xi) = 4xi,k − 4k + ai where

1

2πi
log(1−X1) = 4x1,k − 4k − 2 ,

1

2πi
log(1−X2) = 4x2,k − 4k ,

1

2πi
log(1−X3) = 4x3,k − 4k − 1 ,

1

2πi
log(1−X4) = 4x4,k − 4k + 1 .

(9.24)
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Therefore, we see that the product

e(2x2
i,k/NM)

exp
(

1
2πiNM

Li2(Xi)
)

(1−Xi)
xi,k
NM

= e
(
− Li2(Xi)

(2πi)2NM
− (4xi,k − 4k + ai)

xi,k
NM

+
2x2

i,k

NM

)

= e
(
−

Li2(Xi)− π2

6
+ 2(2πi)2x2

i,k − (2πi)2(4k − ai)xi,k
(2πi)2NM

−
π2

6

(2πi)2NM

)
= e

(
− VCi,k

(2πi)2NM
+

1

24NM

)
= e

(
− VCi,0

(2πi)2NM
+
k(2k − ai)
NM

+
1

24NM

)
.

(9.25)
Then we have terms

DN(e(xi,k/N); q̃−1) =
N−1∏
j=1

(1− e(k/N)q̃−jX
1/N
i )j/N , (9.26)

and

DM(e(xi,k/M); q) =
N−1∏
j=1

(1− e(k/M)qjX
1/M
i )j/M . (9.27)

Finally notice that

1−Xi

−MXi − 4MX4
i e(uM)

=
−1

Xi/(1−Xi) + 4

√
τ√

M
√
N
. (9.28)

Using the Chinese remainder theorem we can split the sum over k of residues into two
decoupled sums

∑
k∈Z/MNZ

e
(
(2k2 − aik)/NM + uxi,k/N

)
(1−Xi)∏N−1

j=1 (1− e(k/N)q̃−jX1/N
i )j/N

∏N−1
j=1 (1− e(k/M)qjX

1/M
i )j/M

=
∑

k∈Z/MZ

∑
`∈Z/NZ

q2k
2
q̃−2`2e(−kai/M)e(−`ai/N)e(uxi,0/N)e(ku)e(`u/τ)∏N−1

j=1 (1− q̃−`−jX1/N
i )j/N−1/2

∏N−1
j=1 (1− qk+jX1/M

i )j/M−1/2

=
∑

k∈Z/MZ

∑
`∈Z/NZ

q2k
2
q̃−2`2X

4k/M
i X

4`/N
i e(uxi,0/N)e(ku)e(`u/τ)∏N−1

j=1 (1− q̃−`−jX1/N
i )j/N (1−Xi)`/N−1/2

∏N−1
j=1 (1− qk+jX1/M

i )j/M (1−Xi)k/M−1/2

=
∑

k∈Z/MZ

∑
`∈Z/NZ

q2k
2
q̃−2`2X

4k/M
i X

4`/N
i e(uxi,0/N)e(ku)e(`u/τ)∏N−1

j=0 (1− q̃−`−jX1/N
i )(j+`)/N−1/2

∏N−1
j=0 (1− qk+jX1/M

i )(j+k)/M−1/2

= e(uxi,0/N)
∑

k∈Z/MZ

q2k
2
X

4k/M
i e(ku)∏N−1

j=0 (1− qk+jX1/M
i )(j+k)/M−1/2

∑
`∈Z/NZ

q̃−2`2X
4`/N
i e(`u/τ)∏N−1

j=0 (1− q̃−`−jX1/N
i )(j+`)/N−1/2

= e((u + 4τ + 4)xi,0/N)q
2
q̃
−2

∑
k∈Z/MZ

q2k
2
X

4k/M
i e(k(u + 4τ + 4))∏N−1

j=0 (1− qk+j+1X
1/M
i )(j+k+1)/M−1/2

∑
`∈Z/NZ

q̃−2`2X
4`/N
i e(`(u + 4τ + 4)/τ)∏N−1

j=0 (1− q̃−`−j−1X
1/N
i )(j+`+1)/N−1/2

(9.29)
Then noting the identities of Proposition 7 completes the proof for A = 4. For A ∈ Z
starting with the state integral∫

Cτ

e(Az(z + 1 + τ)/2τ + uz/τ)

ΦS(z + 1 + τ ; τ)
(9.30)
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and applying exactly the same methods we used for the A = 4 example will produce the
desired result.

9.2 The case of the figure eight knot

In [70] a state integral was introduced associated to the figure eight knot. This was shown to
factor in terms of the two variable series of [92]. However, the factorisation at rationals has
not explicitly computed although was done at τ = 1 in [82]. We will include the computation
here which finalises the full proofs of quantum modularity of the various invariants of 41.

Consider the state integral ∫
Cτ

e(z(z + 1 + τ)/2τ + zu/τ)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz . (9.31)

and assume for these computations that u ∈ Z + τZ. Taking the integrand

f(z) =
e(z(z + 1 + τ)/2τ + zu/τ)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
, (9.32)

we have
f(z +N)

f(z)
= −e(Mz + uM)

(1− e(Mz))2
=

f(z)

f(z −N)
. (9.33)

The equation

1 = − X

(1−X)2
(9.34)

has solutions

Xj =
1

2
+ (−1)j

1

2

√
−3 . (9.35)

Therefore, from the fundamental Lemma 21 the state integral above is given by

(∫
Cτ
−
∫
Cτ+N

) e(z(z + 1 + τ)/2τ + zu/τ)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2

(1− e(Mz))2

(1− e(Mz))2 + e(Mz + uM)
dz . (9.36)

The integrand has poles in the set e(Mz) = 1
2
± 1

2

√
−3 and z ∈ τZ. Then letting xj,k =
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1
2πi

log(Xj) + k we can compute the residue at xj,k/M as

2πiResz= 1
M
xj,k

e(z(z + 1 + τ)/2τ + uz/τ)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2

(1− e(Mz))2

(1− e(Mz))2 − e(Mz + uM)
dz

= 2πiResz=0

e(z(z + 1 + τ)/2τ + zxj,k/N + x2
j,k/2MN + (u+ 1/2 + τ/2)xj,k/N + uz/τ)

(1− e(xj,k/N + z/τ))ΦS(xj,k/M + z + 1 + τ ; τ)2

× (1−Xie(Mz))2

(1−Xje(Mz))2 +Xje(Mz + uM)
dz

=
e(x2

j,k/2MN + (u+ 1/2 + τ/2)xj,k/N)

(1− e(xj,k/N)ΦS(xj,k/M + 1 + τ ; τ)2

(1−Xj)
2

M(2X2
j + (e(uM)− 2)Xj)

=
e(x2

j,k/2MN + (u+ 1/2 + τ/2)xj,k/N)

exp
(

2
2πiNM

Li2(Xj)
)
(1−Xj)

2
xj,k
MN
−2+ 2

M
+ 2
NDN(e(xj,k/N); q̃−1)2DM(e(xj,k/M); q)2

× (1−Xj)
2

M(1− e(xj,k/N))(2X2
j + (e(uM)− 2)Xj)

.

(9.37)
Noting that

1

2πi
log((1−Xj)

2) = xj,k − k + aj , (9.38)

where aj = (−1)j/2, we find that

e(x2
j,k/2NM)

exp
(

2
2πiNM

Li2(Xj)
)

(1−Xj)
2
xj,k
NM

= e
(
− 2Li2(Xj)

(2πi)2NM
− (xj,k − k + aj)

xj,k
NM

+
x2
j,k

2NM

)

= e
(
− 2Li2(Xj)− π2

3
+ (2πi)2 x

2
j,k

2
− (2πi)2(k − aj)xj,k

(2πi)2NM
−

π2

3

(2πi)2NM

)
= e

(
− VCj,k

(2πi)2NM
+

1

12NM

)
= e

(
− VCi,0

(2πi)2NM
+
k(k/2− aj))

NM
+

1

12NM

)
.

(9.39)
Using the Chinese remainder theorem we can split the sum over k of residues into two
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decoupled sums

∑
k∈Z/MNZ

e
(
(k2/2− aik)/NM + (u + 1/2 + τ/2)xi,k/N

)
(1−X1/N

i e(k/N))
∏N−1
j=1 (1− e(k/N)q̃−j−1X

1/N
i )2(j+1)/N−1

∏N−1
j=1 (1− e(k/M)qj+1X

1/M
i )2(j+1)/M−1

=
∑

k∈Z/MZ

∑
`∈Z/NZ

(−1)kqk(k+1)/2(−1)`q̃−`(`+1)/2e(−kai/M)e(−`ai/N)e((u + 1/2 + τ/2)xi,0/N)e(ku)e(`u/τ)

(1− q̃−`X1/N
i )

∏N−1
j=1 (1− q̃−1−`−jX1/N

i )2(j+1)/N−1
∏N−1
j=1 (1− q1+k+jX1/M

i )2(j+1)/M−1

=
∑

k∈Z/MZ

∑
`∈Z/NZ

(−1)kqk(k+1)/2(−1)`q̃−`(`+1)/2X
k/M
i X

`/N
i e((u + 1/2 + τ/2)xi,0/N)e(ku)e(`u/τ)

(1− q̃−`X1/N
i )

∏N−1
j=1 (1− q̃−1−`−jX1/N

i )2(1+j+`)/N−1
∏N−1
j=1 (1− q1+k+jX1/M

i )2(1+j+k)/M−1

=
∑

k∈Z/MZ

∑
`∈Z/NZ

(−1)kqk(k+1)/2(−1)`q̃−`(`+1)/2X
k/M
i X

1/2M
i X

`/N
i X

1/2N
i e(uxi,0/N)e(ku)e(`u/τ)

(1− q̃−`X1/N
i )

∏N−1
j=0 (1− q̃−1−`−jX1/N

i )2(1+j+`)/N−1
∏N−1
j=0 (1− q1+k+jX1/M

i )2(1+j+k)/M−1

= e(uxi,0/N)
∑

k∈Z/MZ

(−1)kqk(k+1)/2X
k/M
i X

1/2M
i e(ku)∏N−1

j=0 (1− q1+k+jX1/M
i )2(1+j+k)/M−1

∑
`∈Z/NZ

(−1)`q̃−`(`+1)/2X
`/N
i X

1/2N
i e(`u/τ)

(1− q̃−`X1/N
i )

∏N−1
j=0 (1− q̃−1−`−jX1/N

i )2(1+j+`)/N−1
.

(9.40)
Note these Appell–Lerch type sums were first recognised in this context in [70] where they
arise in the q–series versions. Now there is a final collection of residues at z ∈ τZ. Here we
find that

2πiResz=kτ
e(z(z + 1 + τ)/2τ + uz/τ)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2

(1− e(Mz))2

(1− e(Mz))2 − e(Mz + uM)
dz

= 2πiResz=0
(−1)kqk(k+1)/2e(ku)e(z(z + 1 + τ)/2τ + kz + uz/τ)

(1− e(z/τ))ΦS(z + 1 + (k + 1)τ ; τ)2

(1− e(Mz))2

(1− e(Mz))2 − e(Mz + uM)
dz

= 2πiResz=0

(−1)kqk(k+1)/2e(ku)e(z(z + 1 + τ)/2τ + kz + uz/τ) exp
(
− 2

2πiNM
Li2(e(Mz))

)
(1− e(Mz))

−2 z
N (1− e(Mz))2

(qe(z); q)k(1− e(z/τ))
∏N−1
j=0 (1− q̃−1−je(z/τ))

2
1+j
N
−1∏M−1

j=0 (1− q1+je(z))
2
1+j
M
−1

((1− e(Mz))2 − e(Mz + uM))

dz

= 2πiResz=0

(−1)kqk(k+1)/2e(ku)e(z(z + 1 + τ)/2τ + kz + uz/τ) exp
(
− 2

2πiNM
Li2(e(Mz))

)
(1− e(Mz))

−2 z
N (1− e(Mz))2

(qe(z); q)2
k

(1− e(z/τ))2(1− e(z))
∏N−1
j=1 (1− q̃−je(z/τ))

2
j
N
−1∏M−1

j=1 (1− qje(z))
2
j
M
−1

((1− e(Mz))2 − e(Mz + uM))

dz

= −
(−1)kqk(k+1)/2e(ku)e(− 1

12NM
)ε(q̃−1)2ε(q)2

(q; q)2
k

N2

e(uM)
,

(9.41)
where we use the multiplier system of the Dedekind–η function ε from equation (8.8). Then
using the identity

M−1∑
k=0

(−1)kq−k(k+1)/2(q; q)2
ke(−(1 + k)u) = M2

M−1∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

e((k −M)u) , (9.42)

we see that summing over the residues at τZ gives

− e
(
− 1

12NM

)
ε(q̃−1)2ε(q)2τ 2

M−1∑
k=0

(−1)kq−k(k+1)/2(q; q)2
ke(−(k + 1)u) . (9.43)

Therefore, from identities similar to those from [70, Thm. 4] this completes the proof.
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9.3 A toy explanatory example
Consider, the element of the Habiro ring

∞∑
k=0

q−k(k+1)/2(q; q)2k . (9.44)

We can use Lemma 17 to show that for q = e(N/M) that this element of the Habiro ring is
given by

M/2−1∑
k=0

(−1)kq−k(k+1)/2(q; q)2k+1 = −M
M−1∑
k=M/2

(−1)k
qk(3k+1)/2

(q; q)2k−M
, (9.45)

Then taking the state integral∫
Cτ

e(z(3z + 1 + τ)/2τ)

(1− e(z/τ))ΦS(2z + 2 + 2τ ; τ)
dz , (9.46)

we see that taking the integrand

f(z) =
e(z(3z + 1 + τ)/2τ)

(1− e(z/τ))ΦS(2z + 2 + 2τ ; τ)
, (9.47)

we have
f(z +N)

f(z)
= − e(3Mz)

(1− e(2Mz))2
=

f(z)

f(z −N)
. (9.48)

Therefore, from the fundamental Lemma 21 the state integral above is given by(∫
Cτ
−
∫
Cτ+N

) e(z(3z + 1 + τ)/2τ)

(1− e(z/τ))ΦS(2z + 2 + 2τ ; τ)

(1− e(2Mz))2

(1− e(2Mz))2 + e(3Mz)
dz . (9.49)

Notice that this integrand has poles from the equation

1 = − e(3Mz)

(1− e(2Mz))2
, (9.50)

and addition it has singularities at k ∈ Zτ however for 0 ≤ k < M/2 these singularities a
removable. Therefore, going through a similar computation as we did for the figure eight
knot ending in equation 9.41, we find that this state integral factorises with a term a multiple
of

M−1∑
k=M/2

(−1)k
qk(3k+1)/2

(q; q)2k−M
. (9.51)

Importantly, the (q; q)2k−M appears from the periodicity of the Faddeev dilogarithm and the
non–removable singularities appearing for M/2 ≤ k < M .
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9.4 The WRT invariant of half surgery on the figure eight

We can take the formula for the WRT invariant∑
0≤`≤k

(−1)kq−
1
2
k(k+1)+`(`+1)+mk (q; q)2k+1

(q; q)`(q; q)k−`
(9.52)

and naturally take the state integral∫
Cτ

∫
Cτ

e(−z1(z1 + 1 + τ)/2τ + z3(z3 + 1 + τ)/τ + z1(m+m′/τ))ΦS(2z1 + 2 + 2τ ; τ)

ΦS(z3 + 1 + τ ; τ)ΦS(z1 − z3 + 1 + τ ; τ)
dz1dz3

(9.53)
We can rewrite this integral by first sending z1 7→ −z1, z3 7→ −z3 and using Proposition 22.
Then using Proposition 23 to expand the Faddeev dilogarithm in ΦS(z3 + 1 + τ ; τ), and then
again to contract the integral over z3. With these steps one can show to up to a factor of
qmq̃−m this integral is given by∫

Cτ

∫
Cτ

e(z2
1/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))

ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)
dz1dz2 . (9.54)

This integral expression has various benifits and in particular has a direction at infinity
where the two dimensional contour can be pushed with vanishing contribution. However, we
do not need this for the factorisation at rationals. Therefore, suppose that τ = N/M ∈ Q>0.
Then we can use the fundamental lemma to factorise this state integral. Indeed, if

f1(z1, z2) =
e((z1 +N)2/τ + (z1 +N)z2/τ + (z1 +N)(−m−m′/τ) + z2(1 + 1/τ))

ΦS(z2 + 1 + τ ; τ)ΦS(2(z1 +N) + 1 + τ ; τ)ΦS(z2 − (z1 +N) + 1 + τ ; τ)

× ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)

e(z2
1/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))

=
e(2Mz1 +Mz2)(1− e(−Mz1 +Mz2))

(1− e(2Mz1))2
.

(9.55)
then

f2(z1, z2) =
e(z2

1/τ + z1(z2 +N)/τ + z1(−m−m′/τ) + (z2 +N)(1 + 1/τ))

ΦS((z2 +N) + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS((z2 +N)− z1 + 1 + τ ; τ)

× ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)

e(z2
1/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))

=
e(Mz1)

(1− e(Mz2))(1− e(−Mz1 +Mz2))
.

(9.56)
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Notice that
fj(z1 + kN, z2 + `N) = fj(z1, z2) , (9.57)

and therefore,
∫
Cτ

∫
Cτ

e(z21/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))

ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)
dz1dz2

=

( ∫
Cτ −

∫
0+N+iR

)2
e(z21/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))dz1dz2

ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)
(
1− e(2Mz1+Mz2)(1−e(−Mz1+Mz2))

(1−e(2Mz1))2

)(
1− e(Mz1)

(1−e(Mz2))(1−e(−Mz1+Mz2))

)
=
( ∫
Cτ
−
∫
Cτ+N

)2 e(z21/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))

ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)

×
(1− e(2Mz1))2(1− e(Mz2))(1− e(−Mz1 +Mz2))dz1dz2(

(1− e(2Mz1))2 − e(2Mz1 +Mz2)(1− e(−Mz1 +Mz2))
)(

(1− e(Mz2))(1− e(−Mz1 +Mz2))− e(Mz1)
) .
(9.58)

We see again that the zeros of the quantum dilogarithms now cancel with the zeros in the
numerator. We see that the integrand has poles when

0 = (1− e(Mz2))(1− e(−Mz1 +Mz2))− e(Mz1) ,

0 = (1− e(2Mz1))2 − e(2Mz1 +Mz2)(1− e(−Mz1 +Mz2)) .
(9.59)

Therefore, considering the algebraic variety

0 = (1−X2)(1−X−1
1 X2)−X1 ,

0 = (1−X2
1 )2 −X2

1X2(1−X−1
1 X2) ,

(9.60)

this can be solved exactly as notice that

1−X2

X1

=
X2

1X2

(1−X2
1 )2

(9.61)

and so
X2 =

(1−X2
1 )2

(1−X2
1 )2 +X3

1

, (9.62)

and taking as in Example 44 taking

ξ7 − ξ6 − 2ξ5 + 6ξ4 − 11ξ3 + 6ξ2 + 3ξ − 1 = 0 , (9.63)

we have
X1,j = −3 + 11ξj + 20ξ2

j − 15ξ3
j + 6ξ4

j − 2ξ5
j − 4ξ6

j ,

X2,j = −9 + 19ξj + 76ξ2
j − 52ξ3

j + 20ξ4
j − 4ξ5

j − 13ξ6
j .

(9.64)

There is one additional solution when X1 = 1 and X2 = 0, however this is not contained at
a finite point. Therefore, letting

xi,j,k =
1

2πi
log(Xi,j) + k (9.65)
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notice that

(1− e(2M(z1 + x1/M)))2 − e(2M(z1 + x1/M) +M(z2 + x2/M))

× (1− e(−M(z1 + x1/M) +M(z2 + x2/M)))

= (1−X2
1e(2Mz1))2 −X2

1X2e(2Mz1 +Mz2)(1−X−1
1 X2e(−Mz1 +Mz2))

= (4X4
1 + (−2X2 − 4)X2

1 +X2
2X1)2πiMz1 + (−X2X

2
1 + 2X2

2X1)2πiMz2 + · · ·

(9.66)

and(
(1− e(M(z2 + x2/M)))(1− e(−M(z1 + x1/M) +M(z2 + x2/M)))− e(M(z1 + x1/M))

)
=
(
(1−X2e(Mz2))(1−X−1

1 X2e(−Mz1 +Mz2))−X1e(Mz1)
)

= (−X1 + (−X2
2 +X2)X−1

1 )2πiMz1 + (−X2 + (2X2
2 −X2)X−1

1 )2πiMz2 + · · · .
(9.67)

Then we can compute

det

(
4X4

1 + (−2X2 − 4)X2
1 +X2

2X1 −X2X
2
1 + 2X2

2X1

−X1 + (−X2
2 +X2)X−1

1 −X2 + (2X2
2 −X2)X−1

1

)
= −257 + 806ξ + 947ξ2 − 749ξ3 + 331ξ4 − 133ξ5 − 213ξ6 = ∆ .

(9.68)

Therefore, the double integral deformed near (x1,j,k/M, x2,j,`/M) gives

e(x2
1,j,k/NM + x1,j,kx2,j,`/NM + x1,j,k(−m/M −m′/N) + x2,j,`(1/M + 1/N))

ΦS(x2,j,`/M + 1 + τ ; τ)ΦS(2x1,j,k/M + 1 + τ ; τ)ΦS(x2,j,`/M − x1,j,k/M + 1 + τ ; τ)

×
(1−X2

1,j)
2(1−X2,j)(1−X−1

1,jX2,j)

M2∆

=
e(x2

1,j,k/NM + x1,j,kx2,j,`/NM + x1,j,k(−m/M −m′/N) + x2,j,`(1/M + 1/N))

(1−X2
1,j)
−2(1−X2,j)−1(1−X−1

1,jX2,j)−1M2∆

×
exp

(
− 1

2πiNM Li2(X2,j)
)

(1−X2,j)
1−

x2,j,`
NM

− 1
M

DN (e(x2,j,`/N); q̃−1)DM (qe(x2,j,`/M); q)

exp
(
− 1

2πiNM Li2(X2
1,j)
)

(1−X2
1,j)

1−
2x1,j,k
NM

− 1
M

DN (e(2x1,j,k/N); q̃−1)DM (qe(2x1,j,k/M); q)

×
exp

(
− 1

2πiNM Li2(X−1
1,jX2,j)

)
(1−X−1

1,jX2,j)
1−

x2,j,`−x1,j,k
NM

− 1
M

DN (e(x2,j,`/N − x1,j,k/N); q̃−1)DM (qe(x2,j,`/M − x1,j,k/M); q)
.

(9.69)
Firstly, notice that

− Li2(X2,j)− Li2(X2
1,j)− Li2(X−1

1,jX2,j)− 2πix2,j,` log(1−X2,j)− 2(2πi)x1,j,k log(1−X2
1,j)

− 2πi(x2,j,` − x1,j,k) log(1−X−1
1,jX2,j) + (2πi)2x2

1,j,k + (2πi)2x1,j,kx2,j,`

= −VCj − 4π2
(
k2 + k`+ ajk +

1

24

)
(9.70)
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where aj = 2, 0, 0, 1, 1,−1, 1 for j = 1, . . . , 7 or

2πiaj = −2 log(1−X2
1,j) + log(1−X−1

1,jX2,j) + 2 log(X1) + log(X2) (9.71)

where we note that for all j

0 = − log(1−X2,j)− log(1−X−1
1,jX2,j) + log(X1) . (9.72)

Therefore, we see that

e(x2
1,j,k/NM + x1,j,kx2,j,`/NM) exp

(
− 1

2πiNM
Li2(X2,j)

)
(1−X2,j)

−
x2,j,`
NM

× exp
(
− 1

2πiNM
Li2(X2

1,j)
)

(1−X2
1,j)
−

2x1,j,k
NM

× exp
(
− 1

2πiNM
Li2(X−1

1,jX2,j)
)

(1−X−1
1,jX2,j)

−
x2,j,`−x1,j,k

NM

= e
(
− VCj + π2/6

(2πi)2NM

)
e
(k2 + k`

NM

)
e
(kaj + `× 0

NM

)
.

(9.73)

With this using the residue theorem and the Chinese remainder theorem part of the final
integral of equation (9.58) can then be shown to factorise as

∑
k,`∈Z/MZ

qk
2+k`−mk+`X

2k+`−m
M

1 X
k+1
M

2

∏M−1
i=0 (1− qi+1+`−kX

−1/M
1 X

1/M
2 )−(i+1+`−k)/M−1/2∏M−1

i=0 (1− qi+1+`X
1/M
2 )(i+1+`)/M−1/2

∏M−1
i=0 (1− qi+1+2kX

2/M
1 )(i+1+2k)/M−1/2

×
√

(1−X2
1 )2(1−X2)(1−X−1

1 X2)

∆

(9.74)

Therefore, we see that the seven by seven component of the matrix of Theorem 8 gives rise
to a quantum modular form after applying the identities of Lemma 18. To extend to the
eight by eight, one needs to modify the original integral in a similar way to that discovered
in [70]. This integral is given explicitly in (10.38). Then analogously to the situation of the
figure eight knot we can factorise with use of the identity for q = e(a/c)∑

0≤`≤k≤c/2

(−1)kq−
1
2
k(k+1)+`(`+1)+mk (q; q)2k+1

(q; q)`(q; q)k−`

= −
∑

c/2≤k≤`≤c−1

(−1)k+`qk(3k+1)/2+`(`+1)/2−mk−m (q; q)`+k
(q; q)2k−c(q; q)`

,

(9.75)

where we note the 2k−c arises for exactly the same reason as in the toy example of Section 9.3.



Chapter 10

Factorisation of state integrals as q–series

Factorising as q–series is even simpler than the factorisation at rationals. This was studied
in [21, 73]. The main difference is that we need good behaviour in some direction heading
towards infinity. This relates to an untrapping procedure discovered originally in unpulished
work of Garoufalidis and Kashaev [65]. The simple idea is to then use the q and q̃ difference
equations of the quantum dilogarithm, the formula when τ ∈ h and to compute the residues at
the poles enclosed by the contour and the direction towards infinity that has some exponential
decay. These decouple leading to a bilinear combination of q and q̃ series. This is easily seen
in a example so as a warm up lets go through a proof of Proposition 23.

Proof of Proposition 23. Consider, the state integral∫
Cτ

e(wz/τ)

ΦS(z + τ + 1; τ)
dz =

∫
Cτ

(qe(z); q)∞
(e(z/τ); q̃)∞

e(wz/τ)dz . (10.1)

The contour and poles are shown in 8.7. Pushing the contour to infinity we can collect the
residues which gives

−
∑

m,n∈Z≥0

2πiResz=mτ+nΦS(z + τ + 1; τ)−1e(wz/τ)dz

= −
∑

m,n∈Z≥0

e(mw + nw/τ)2πiResz=0ΦS(z + (m+ 1)τ + (n+ 1); τ)−1e(wz/τ)dz

= −
∑

m,n∈Z≥0

2πiResz=0
(qe(z); q)∞

(q̃e(z/τ); q̃)∞

e(wz/τ)

1− e(z/τ)

e(mw)

(qe(z); q)m

e(nw/τ)

(q̃−1e(z/τ); q̃−1)n
dz

= τ
(q; q)∞
(q̃; q̃)∞

∑
m∈Z≥0

e(mw)

(q; q)m

∑
n∈Z≥0

(−1)nq̃n(n+1)/2e(nw/τ)

(q̃; q̃)n

= τ
(q; q)∞
(q̃; q̃)∞

(q̃e(w/τ); q̃)∞
(e(w); q)∞

= τ
(q; q)∞
(q̃; q̃)∞

ΦS(w; τ) .

(10.2)
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A similar computation proves the other equality.

Before continuing on to more interesting examples of this kind of computation, one should
breifly discuss the methods used to improve the analyticity of state integrals. In unpublished
work of Garoufalidis and Kashaev [65], they worked out a certain untrapping procedure,
which in examples gave a region at infinity for which the contour could be pushed. The
basic idea is to apply the identities of Proposition 23, for which we just gave the proof.
The analogue of this procedure with the q–series is applying the identities of Lemma 7. For
example, take the Rogers–Ramanujan function

H(q) =
∞∑
k=0

qk(k+1)

(q; q)k
. (10.3)

Notice that

H(q−1) =
∞∑
k=0

(−1)k
q−k(k+1)/2

(q; q)k
(10.4)

is not convergent when |q| < 1. However,

∑
k∈Z

qk(k+1)

(q; q)k
=

1

(q; q)∞

∑
k∈Z

qk(k+1)(qk+1; q)∞

=
1

(q; q)∞

∑
k,`∈Z

(−1)`
qk(k+1)+k`+`(`+1)/2

(q; q)`

=
1

(q; q)∞

∑
`∈Z

θ(−q`; q2)(−1)`
q`(`+1)/2

(q; q)`

=
1

(q; q)∞

1∑
r=0

(−1)r
∑
`∈Z

θ(−q2`+r; q2)
q(2`+r)(2`+r+1)/2

(q; q)2`+r

=
1

(q; q)∞

1∑
r=0

(−1)rθ(−qr; q2)
∑
`∈Z

q−`(`+1)q−r`
q(2`+r)(2`+r+1)/2

(q; q)2`+r

=
1

(q; q)∞

1∑
r=0

(−1)rθ(−qr; q2)qr(r+1)/2
∑
`∈Z

q`(`+r)

(q; q)2`+r

(10.5)

This is a simple example of the equation (6.43). The main point is that now there is a
natural candidate for the q−1–series as

∑
`∈Z

q`(`+r)

(q; q)2`+r

(10.6)
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is convergent when |q| 6= 1 and θ and η have natural extensions to |q| 6= 1. The most
important point is that θ and η are modular functions. This means that when dealing with
state integrals they will not appear to cause issue as their quotient will be some simple exact
functions holomorphic for τCS. In this example, we see that the analogous computation
with the state integrals gives∫

Cτ

e(z(z + 1 + τ)/τ)

ΦS(z + 1 + τ ; τ)
dz

=
(q̃; q̃)∞
τ(q; q)∞

∫
Cτ

∫
Cτ

e(w(w + 1 + τ)/2τ + wz/τ + z(z + 1 + τ)/τ)

ΦS(w + τ + 1; τ)
dwdz

= e
(
− 3

8

)√τ

2
q̃

1
4 q−

1
4

(q̃; q̃)∞
τ(q; q)∞

∫
Cτ

e(w2/4τ)

ΦS(w + τ + 1; τ)
dw

= e
(
− 3

8

)√
2τ q̃

1
4 q−

1
4

(q̃; q̃)∞
τ(q; q)∞

∫
Cτ

e(w2/τ)

ΦS(2w + τ + 1; τ)
dw

(10.7)

where we used the fact that∫
Cτ
e(z(z + 1 + τ)/τ + wz/τ)dz = e

(1

8

)√τ

2
e
(
− w2

4τ
− w(1 + τ)

2τ
− (1 + τ)2

4τ

)
. (10.8)

We see that both computations are completely analogous where the θ–functions are inter-
changed with Gaussian integrals. These kind of computations become important when the
particular shape of a q–hypergeometric function leads to state integrals whose contour can-
not be pushed to infinity. However, there are some state integrals that can be evaluated
without this method of pushing the contours to infinity such as the Mordell integral. There
the main idea is to use the fact that the matrix of state integrals satisfies uncoupled q and
q̃–difference equations. Then taking the a multiple of a Wronskian of the q–difference on
one side and the q̃ version on the other, one has an elliptic function, which if holomorphic
is constant in the elliptic variable. Then one can check boundary conditions to prove the
equality.

10.1 The case of Nahm sums
Our first example will be the case for the A = 4 Nahm sum. This method works for all
integral A and one could assume that it should also work for rational cases as well, however,
we won’t go into that detail here. Closing we will extremely briefly describe the identities
that one needs for the proof for integral A.

Proof of Theorem 5 for A = 4. For

GA,B,r(t; q) =
∞∑
k=0

qA(Bk+r)(Bk+r+1)/2BtBk+r

(q; q)Bk+r

, (10.9)
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let

F (t; q) =


G3/4,1,0(t; q) G3/4,1,0(it; q) G3/4,1,0(−t; q) G3/4,1,0(−it; q)
G3/4,1,0(qt; q) G3/4,1,0(iqt; q) G3/4,1,0(−qt; q) G3/4,1,0(−iqt; q)
G3/4,1,0(q2t; q) G3/4,1,0(iq2t; q) G3/4,1,0(−q2t; q) G3/4,1,0(−iq2t; q)
G3/4,1,0(q3t; q) G3/4,1,0(iq3t; q) G3/4,1,0(−q3t; q) G3/4,1,0(−iq3t; q)



G(t; q) =


G3,4,0(t; q) G3,4,1(t; q) G3,4,2(t; q) G3,4,3(t; q)
G3,4,0(qt; q) G3,4,1(qt; q) G3,4,2(qt; q) G3,4,3(qt; q)
G3,4,0(q2t; q) G3,4,1(q2t; q) G3,4,2(q2t; q) G3,4,3(q2t; q)
G3,4,0(q3t; q) G3,4,1(q3t; q) G3,4,2(q3t; q) G3,4,3(q3t; q)



H(t; q) =


G1,4,0(t; q) G1,4,1(t; q) G1,4,2(t; q) G1,4,3(t; q)
G1,4,0(qt; q) G1,4,1(qt; q) G1,4,2(qt; q) G1,4,3(qt; q)
G1,4,0(q2t; q) G1,4,1(q2t; q) G1,4,2(q2t; q) G1,4,3(q2t; q)
G1,4,0(q3t; q) G1,4,1(q3t; q) G1,4,2(q3t; q) G1,4,3(q3t; q)

 .

(10.10)

We then have

F (qt; q) = A(t; q)F (t; q) and G(qt; q) = A(t; q)G(t; q) (10.11)

where

A(t; q) =


0 1 0 0
0 0 1 0
0 0 0 1
−q6 q3 + q4 + q5 + q6 −q − q2 − 2q3 − q4 − q5 1 + q + q2 + q3 + q27/2t4

 .

(10.12)
Notice that as

∞∑
n=0

q
3
8
n(n+1)(ist)n

(q; q)n
=

3∑
r=0

isr
∞∑
n=0

q
3
8

(4n+r)(4n+r+1)t4n+r

(q; q)4n+r

, (10.13)

we have

F (t; q) = G(t; q)


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 . (10.14)
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Moreover, notice that as

G3,4,r(t; q
−1) =

∞∑
k=0

q−3(4k+r)(4k+r+1)/8t4k+r

(q−1; q−1)4k+r

=
∞∑
k=0

q−3(4k+r)(4k+r+1)/8t4k+r

(−1)4k+rq−(4k+r)(4k+r+1)/2(q; q)4k+r

= (−1)r
∞∑
k=0

q(4k+r)(4k+r+1)/8t4k+r

(q; q)4k+r

= (−1)rG1,4,r(t; q) ,

(10.15)

we have

G(t; q−1) = H(t; q)


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 = H(−t; q) . (10.16)

There exists an explicit (see Proposition 5) P (t, q) holomorphic for t ∈ C× such that

A(qt; q−1)−1 = P (qt; q)A(t; q)−TP (t; q)−1 . (10.17)

Therefore, we see that

G(t; q−1)−1P (t; q)G(t; q)−T (10.18)

is elliptic and holomorphic for t ∈ C×. In particular, checking boundary conditions, there is
a P (with entries in Q(q)[t±]) such that

G(t; q)−T = P (t; q)G(t; q−1)


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (10.19)
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Finally, we have

G4,1,0(t; q) =
∞∑
k=0

q2k(k+1)tk

(q; q)k

=
1

(q; q)∞

∞∑
k,`=0

(−1)`
q2k(k+1)+k`+`(`+1)/2

(q; q)`
tk

=
1

(q; q)∞

3∑
r=0

∞∑
`=0

(−1)4`+r q
(4`+r)(4`+r+1)/2

(q; q)4`+r

θ(−q4`+rt; q4)

=
1

(q; q)∞

3∑
r=0

(−1)rqr(r+1)/8θ(−qrt; q4)
∞∑
`=0

q3(4`+r)(4`+r+1)/8

(q; q)4`+r

(q3/2t)−`

=
1

(q; q)∞

3∑
r=0

(−1)rqr(r+4)/8tr/4θ(−qrt; q4)G3,4,r(q
−3/8t−1/4, q) .

(10.20)

Therefore,


G4,1,0(t; q)

G4,1,0(q−4t; q)
G4,1,0(q−8t; q)
G4,1,0(q−12t; q)

 =


1 0 0 0
0 t 0 0
0 0 q−4t2 0
0 0 0 q−12t3

G(q−3/8t−1/4; q)


θ(−t;q4)
(q;q)∞

−q5/8t1/4θ(−qt;q4)
(q;q)∞

q12/8t2/4θ(−q2t;q4)
(q;q)∞

−q21/8t3/4θ(−q3t;q4)
(q;q)∞

 .

(10.21)
Finally, the modularity of the vector of θ–functions is given by

e

(
−u

2

8τ

)
e

(
1

8

)
2τ−1/2q̃1/2t̃1/2


θ(−t̃; q̃4)

−q̃5/8t̃1/4θ(−q̃t̃; q̃4)
q̃12/8t̃2/4θ(−q̃2t̃; q̃4)
−q̃21/8t̃3/4θ(−q̃3t̃; q̃4)



=


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 q1/2t1/2


θ(−t; q4)

−q5/8t1/4θ(−qt; q4)
q12/8t2/4θ(−q2t; q4)
−q21/8t3/4θ(−q3t; q4)


(10.22)

With all this set up we can now factorise the state integral∫
Cτ

e(z(z + 1 + τ)/8τ + uz/τ)

ΦS(z + 1 + τ ; τ)
dz (10.23)
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to see that it is an elementary function holomorphic on τ ∈ CS times

∞∑
m,n=0

e(mn/4)e(m/8)
qm(m+1)/8

(q; q)m
tme(−3n/8)

q̃3n(n+1)/8

(q̃; q̃)n
t̃n

=
3∑
r=0

∞∑
m,n=0

e(m/2 + r/8)
q(4m+r)(4m+r+1)/8

(q; q)4m+r

t4m+re((−3 + 2r)n/8)
q̃3n(n+1)/8

(q̃; q̃)n
t̃n

=
3∑
r=0

G1,4,r (e(1/8)t)G3/4,1,0

(
e(−3/8 + r/4)t̃; q̃

)
.

(10.24)

Therefore, shifting t 7→ q−3/8e(3/8)t−1/4 and t̃ 7→ e(−3/8)q̃−3/8t̃−1/4, the matrix

Ω(0)(z; τ) = F (iq̃−3/8t̃; q̃)H(−q−3/8t; q)T (10.25)

extends for τ ∈ CS. Then notice that

F (iq̃−3/8t̃; q̃) = F (q̃−3/8t̃; q̃)


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 . (10.26)
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Therefore, using Equations (10.14) (10.16) (10.19) (10.21) (10.22) (10.25),


G4,1,0(t̃; q̃)

G4,1,0(q̃−4 t̃; q̃)

G4,1,0(q̃−8 t̃; q̃)

G4,1,0(q̃−12 t̃; q̃)



=


1 0 0 0
0 t̃ 0 0

0 0 q̃−4 t̃2 0

0 0 0 q̃−12 t̃3

G(q̃
−3/8

t̃
−1/4

, q̃)



θ(−t̃;q̃4)
(q̃;q̃)∞

−q̃5/8 t̃1/4θ(−q̃t̃;q̃4)
(q̃;q̃)∞

q̃12/8 t̃2/4θ(−q̃2 t̃;q̃4)
(q̃;q̃)∞

−q̃21/8 t̃3/4θ(−q̃3 t̃;q̃4)
(q̃;q̃)∞



=


1 0 0 0
0 t̃ 0 0

0 0 q̃−4 t̃2 0

0 0 0 q̃−12 t̃3

F (iq̃
−3/8

t̃
−1/4

, q̃)


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


−1

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


−1



θ(−t̃;q̃4)
(q̃;q̃)∞

−q̃5/8 t̃1/4θ(−q̃t̃;q̃4)
(q̃;q̃)∞

q̃12/8 t̃2/4θ(−q̃2 t̃;q̃4)
(q̃;q̃)∞

−q̃21/8 t̃3/4θ(−q̃3 t̃;q̃4)
(q̃;q̃)∞



= Ω
(1)

(u; τ)H(−q−3/8
t
−1/4

, q)
−T


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


−1

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


−1

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




θ(−t;q4)
(q;q)∞

−q5/8t1/4θ(−qt;q4)
(q;q)∞

q12/8t2/4θ(−q2t;q4)
(q;q)∞

−q21/8t3/4θ(−q3t;q4)
(q;q)∞



= Ω
(1)

(u; τ)G(q
−3/8

t
−1/4

, q
−1

)
−T


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




θ(−t;q4)
(q;q)∞

−q5/8t1/4θ(−qt;q4)
(q;q)∞

q12/8t2/4θ(−q2t;q4)
(q;q)∞

−q21/8t3/4θ(−q3t;q4)
(q;q)∞



= Ω
(2)

(u; τ)


1 0 0 0
0 t 0 0

0 0 q−4t2 0

0 0 0 q−12t3

G(q
−3/8

t
−1/4

, q)


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




θ(−t;q4)
(q;q)∞

−q5/8t1/4θ(−qt;q4)
(q;q)∞

q12/8t2/4θ(−q2t;q4)
(q;q)∞

−q21/8t3/4θ(−q3t;q4)
(q;q)∞



= Ω
(2)

(u; τ)


1 0 0 0
0 t 0 0

0 0 q−4t2 0

0 0 0 q−12t3

G(q
−3/8

t
−1/4

, q)



θ(−t;q4)
(q;q)∞

−q5/8t1/4θ(−qt;q4)
(q;q)∞

q12/8t2/4θ(−q2t;q4)
(q;q)∞

−q21/8t3/4θ(−q3t;q4)
(q;q)∞



= Ω
(2)

(u; τ)


G4,1,0(t; q)

G4,1,0(q−4t; q)

G4,1,0(q−8t; q)

G4,1,0(q−12t; q)

 ,

(10.27)
where Ω(i) are elementary functions holomorphic for τ ∈ CS times Ω(0). Therefore, finally,
by a change of gauge we have


G4,1,0(t̃; q̃)
G4,1,0(q̃t̃; q̃)
G4,1,0(q̃2t̃; q̃)
G4,1,0(q̃3t̃; q̃)

 = Ω(u; τ)


G4,1,0(t; q)
G4,1,0(qt; q)
G4,1,0(q2t; q)
G4,1,0(q3t; q)

 . (10.28)
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For A ∈ Z starting with the state integral∫
Cτ

e(z(z + 1 + τ)/2Aτ + uz/τ)

ΦS(z + 1 + τ ; τ)
. (10.29)

Applying exactly the same methods we used for the A = 4 example will produce the desired
result. The additional steps needed are the identities of Section 6.1 and 6.3 along with the
modularity of the vector–valued θ–function given in equation (7.73)

10.2 The case of the figure eight knot
For the figure eight knot, the state integral

Ω(u; τ) =
(q̃; q̃)2

∞
τ(q; q)2

∞

∫
Cτ

e(z(z + 1 + τ)/2τ + zu/τ)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz , (10.30)

was factorised in [73, 70] and the analogue of the quadratic relations were also given [70,
Thm. 4]. However, we include here a computation of the q–difference equations without
the factorisation. The computation is completely analogous to that of the q–series with the
addition of a residue appearing as opposed to the boundary of the sum. Notice that

e((z + τ)(z + 1 + 2τ)/2τ + zu/τ + u)

(1− e(z/τ))ΦS(z + 1 + 2τ ; τ)2

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2

e(z(z + 1 + τ)/2τ + zu/τ)
= − e(z + τ + u)

(1− e(z + τ))2
.

(10.31)
Therefore, we see that

− τ
(q; q)2∞
(q̃; q̃)2∞

+

∫
Cτ

e(z(z + 1 + τ)/2τ + zu/τ)(1− e(z))2

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz

= 2πiResz=0
e(z(z + 1 + τ)/2τ + zu/τ)(1− e(z))2

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz +

∫
Cτ

e(z(z + 1 + τ)/2τ + zu/τ)(1− e(z))2

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz

=

∫
Cτ+τ

e(z(z + 1 + τ)/2τ + zu/τ)(1− e(z))2

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz =

∫
Cτ

e((z + τ)(z + 1 + 2τ)/2τ + zu/τ + u)(1− e(z + τ))2

(1− e(z/τ))ΦS(z + 1 + 2τ ; τ)2
dz

= −
∫
Cτ

e(z(z + 1 + τ)/2τ + zu/τ)e(z + τ + u)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz = −qt

∫
Cτ

e(z(z + 1 + τ)/2τ + z(u + τ)/τ)

(1− e(z/τ))ΦS(z + 1 + τ ; τ)2
dz .

(10.32)

Therefore, we see that

Ω(u; τ) + (qe(u)− 2)Ω(u+ τ ; τ) + Ω(u+ 2τ ; τ) = 1 . (10.33)

Therefore, as mentioned previously, another approach to prove the factorisation in this ex-
ample is to take  Ω(u; τ) Ω(u− τ ; τ) Ω(u− 2τ ; τ)

Ω(u− 1; τ) Ω(u− 1− τ ; τ) Ω(u− 1− 2τ ; τ)
Ω(u− 2; τ) Ω(u− 2− τ ; τ) Ω(u− 2− 2τ ; τ)

 (10.34)
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10.3 A seven by seven matrix of q–series
Consider the state integral we introduced for the seven by seven matrix associated to 41(1, 2),∫

Cτ

∫
Cτ

e(z2
1/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))dz1dz2

ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)
. (10.35)

This has poles at z1 ∈ 1
2
Z≥0 + τ

2
Z≥0, z2−z1 ∈ Z≥0 + τZ≥0, z2 ∈ Z≥0 + τZ≥0. We can compute

by repeated applications of the residue theorem.∫
Cτ

∫
Cτ

e(z2
1/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))

ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)
dz1dz2

= −
∫
Cτ

∞∑
j,j′=0

Resz2=jτ+j′
e(2z2

1/τ + z1z2/τ + z1(1−m+ (1−m′)/τ) + z2(1 + 1/τ))

ΦS(z1 + z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 + 1 + τ ; τ)
dz1dz2

−
∫
Cτ

∞∑
j,j′=0

Resz2=jτ+j′
e(z2

1/τ + z1z2/τ + z1(−m−m′/τ) + z2(1 + 1/τ))

ΦS(z2 + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 − z1 + 1 + τ ; τ)
dz1dz2

=
τ(q; q)∞
(q̃; q̃)∞

∫
R

∞∑
j,j′=0

qj q̃−j
′
e(2z2

1/τ + z1((j + 1−m)τ + (j′ + 1−m′))/τ)

(q; q)j(q̃−1; q̃−1)j′ΦS(z1 + jτ + j′ + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)
dz1

+
τ(q; q)∞
(q̃; q̃)∞

∫
R

∞∑
j,j′=0

qj q̃−j
′
e(z2

1/τ + z1((j −m)τ + (j′ −m′))/τ)

(q; q)j(q̃−1; q̃−1)j′ΦS(2z1 + 1 + τ ; τ)ΦS(jτ + j′ − z1 + 1 + τ ; τ)
dz1

= − τ(q; q)∞
(q̃; q̃)∞

∞∑
k,j,k′,j′=0

Res
z1= k

2
τ+ k′

2

qj q̃−j
′
e(2z2

1/τ + z1((j + 1−m)τ + (j′ + 1−m′))/τ)

(q; q)j(q̃−1; q̃−1)j′ΦS(z1 + jτ + j′ + 1 + τ ; τ)ΦS(2z1 + 1 + τ ; τ)
dz1

− τ(q; q)∞
(q̃; q̃)∞

∞∑
k,j,k′,j′=0

Res
z1= k

2
τ+ k′

2

qj q̃−j
′
e(z2

1/τ + z1((j −m)τ + (j′ −m′))/τ)

(q; q)j(q̃−1; q̃−1)j′ΦS(2z1 + 1 + τ ; τ)ΦS(jτ + j′ − z1 + 1 + τ ; τ)
dz1 .

(10.36)
These sums can now be broken up into congruences. In particular, we see that for k, k′ ∈ 2Z
we will get double and triple poles and otherwise we have simple poles. The values at the
simple poles can easily be computed and give rise to the q–series Z(j) for j > 3. Then the
residues for k, k′ ∈ 2Z can be computed by expanding in z1 using Lemma 19. This gives rise
to the functions Z(j) for j = 1, 2, 3. Importantly, in the factorisation a term of the final sum
proportional to

Z(1)
m (q)Z

(2)
m′ (q̃

−1) (10.37)

appears and Z(1)
m (q)/2 satisfies the inhomogeneous q–difference equation (6.93). However, as

noted in Proposition 11 Z(2)
m (q−1) = 0 for |q| < 1.
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10.4 An eight by eight matrix of q–series
To extend this result to the eight by eight matrix, we take the state integral, which besides
the factors (1 − e(z1/τ))(1 − e(z3/τ)) in the denominator of the integrand, appears as an
intermediate step of the computation for passing from equation (9.53) to equation (9.54) and
is given by

∫
Cτ

∫
Cτ

e(3z1(z1 + 1 + τ)/2τ + z3(z3 + 1 + τ)/2τ − z1(m + 1 + (m′ + 1)/τ))ΦS(z3 + 1 + τ ; τ)

(1− e(z1/τ))(1− e(z3/τ))ΦS(z3 − z1 + τ + 1)ΦS(2z1 + 1 + τ ; τ)
dz1dz3 . (10.38)

To factorise this as q–series, one expands the Faddeev in the numerator to get a triple integral

τ
−1 (q̃; q̃)∞

(q; q)∞

∫
Cτ

∫
Cτ

∫
Cτ

e(2z1(z1 + 1 + τ)/τ + z1z3/τ + z3(z3 + 1 + τ)/2τ − z1(m + 1 + (m′ + 1)/τ) + (z1 + z3 + 1 + τ)z2/τ)

(1− e(z1/τ))(1− e(z3/τ))ΦS(z3 + τ + 1)ΦS(2z1 + 1 + τ ; τ)ΦS(z2 + 1 + τ ; τ)
dz1dz2dz3 .

(10.39)
Then integrating first in z3, then z2, and then z1, we find exactly the q–series given in
Theorem 8. The final steps are the identities similar to that of Proposition 11. We find
that the final factorisation has terms with factors Z(3) and Z(1) and other factors for each of
these terms vanish in opposite half planes so that Z(1)(q) appears when |q| < 1 while Z(3)(q)
appears when |q| > 1.





Chapter 11

Conjectures on resurgence and outlook

While quantum modularity can be established in examples, there seems to be a deeper un-
derlying structure. In particular, it seems that the QM–cocycles associated to quantum
modular forms are related to the Borel resummation of asymptotic series associated to the
asymptotics of the quantum modular forms. Therefore, this conjecturally states that Borel
resummation in these examples factorises as q and q̃–series. On top of this, one finds nu-
merically that the asymptotic series coming from q–hypergeometric functions are resurgent.
Detailed conjectures on the behaviour of Stokes phenomenon then allow, when combined
with the conjectural formulae for the Borel resummation, effective computation of the Stokes
constants.

11.1 Borel resummation equals state integrals?

It was noticed in [69] that the Borel resummation of the asymptotic series of certain q–
hypergeometric sums agrees numerically with certain combinations of associated state inte-
grals. This conjecture can of course be extended to any of the example we have considered.
As we have seen in the last sections, state integrals can be factorised at the rationals and
the upper and lower half planes. This means that these conjectures can be studied using
quantum modular forms as opposed to the state integrals themselves. Here we will focus on
the case of the A = 4 Nahm sum and the WRT invariant of half surgery on the figure eight
knot to test these conjectures numerically.

Conjecture 12. [69]1 The Borel resummation of asymptotic series associated to q–hypergeometric
functions is given by combinations of associated state integrals.

1See the footnote for conjecture 13.
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Example 61 (Borel resummation and the A = 4 Nahm sum). We can consider the evalua-
tion of the Nahm sum

fm(q) =
∞∑
k=0

q2k2+km

(q; q)k
, (11.1)

at q̃ = e(−1/τ) where τ = 1000 e(0.0001) and we find that

f0(q̃) = (1.4799 · · ·+ 1.8058 · · · i)× 1067 . (11.2)

Then if we take the Borel resummation of the asymptotic series discussed in Example 39 we
find that the quotient is given by

f0(q̃)

s(Φ̂(3))(2πi/τ)
= 1.0000 · · · − 2.7438 · · · × 10−8 . (11.3)

Then we see that( f0(q̃)

s(Φ̂(3))(2πi/τ)
− 1
)
q−3 = (1.0197− 2.4883× 10−5 · i) , (11.4)

and similarly,( f0(q̃)

s(Φ̂(3))(2πi/τ)
−1−q3−q4−q5−q6−q7−q8−q9

)
q−10 = (2.0397 · · ·−5.0718 · · · i×10−5) .

(11.5)
Indeed, continuing we can identify this q–series as

f1(q) = 1 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + 2q10 + 2q11 + 3q12 + 3q13

+ 4q14 + 4q15 + 5q16 + 5q17 + 6q18 + 6q19 + 7q20 + 8q21 + 9q22

+ 10q23 + 12q24 + 13q25 + 15q26 + 17q27 + 19q28 + 21q29 + · · · ,
(11.6)

and then we find that

f0(q̃)− s(Φ̂(3))(2πi/τ)f1(q) = 0.20122 · · ·+ 0.68776 · · · i . (11.7)

Then we can continue to find that

f0(q̃)− s(Φ̂(1))(2πi/τ)f2(q)− s(Φ̂(2))(2πi/τ)f0(q)− s(Φ̂(3))(2πi/τ)f1(q)

− s(Φ̂(3))(2πi/τ)qf3(q) = (5.5399 · · · − 3.7010 · · · i)× 10−138 .
(11.8)

This error is exactly the order of numerical error of the Borel resummation. This leads to a
conjectural identity for τ just above the positive reals

f0(q̃) = s(Φ̂(1))(2πi/τ)f2(q) + s(Φ̂(2))(2πi/τ)f0(q)

+ s(Φ̂(3))(2πi/τ)f1(q) + s(Φ̂(3))(2πi/τ)qf3(q) .
(11.9)
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Performing similar numerical checks for τ just above the negative reals, we find a similar
statement

f0(q̃) = s(Φ̂(1))(2πi/τ)f2(q) + s(Φ̂(2))(2πi/τ)f0(q)

+ s(Φ̂(3))(2πi/τ)qf3(q) + s(Φ̂(3))(2πi/τ)f1(q) .
(11.10)

To then compute the Stokes constants we need a basis of series similar to f giving similar
identities. This can be constructed using the identity from equation (10.21) and setting t = qm

and replacing 
θ(−qm; q4)

−q5/8+m/4θ(−qm+1; q4)
q12/8+m/2θ(−qm+2; q4)
−q21/8+3m/4θ(−qm+3; q4)

 , (11.11)

by coefficients in the ε expansion of

exp
(1

2
ε+

m

4
ε+

1

4
ε2G2(q)

)
θ(−qm exp(ε); q4)

−q5/8+m/4 exp(ε/4)θ(−qm+1 exp(ε); q4)
q12/8+m/2 exp(ε/2)θ(−qm+2 exp(ε); q4)
−q21/8+3m/4 exp(3ε/4)θ(−qm+3 exp(ε); q4)

 , (11.12)

which, for example, we could take the ε0, ε1, ε2, ε4, which in a matrix has q expansion with
columns

Θm(q) =


2 + 2q4

−q
−3
8 − q

5
8 − q

21
8

q
−1
2 + 2q

3
2

−q
−3
8 − q

5
8 − q

21
8

 ,


0

1
4
q
−3
8 − 3

4
q
5
8 + 5

4
q
21
8

0

− 1
4
q
−3
8 + 3

4
q
5
8 − 5

4
q
21
8

 ,


11
48

+ 1
2
q + 3

2
q2 + 2q3 + 275

48
q4 + 7

2
q5

− 1
48
q
−3
8 − 25

48
q
5
8 − q

13
8 − 121

48
q
21
8 − 3q

29
8

− 1
96
q
−1
2 + 1

4
q
1
2 + 83

48
q
3
2 + 3

2
q
5
2 + 13

4
q
7
2

− 1
48
q
−3
8 − 25

48
q
5
8 − q

13
8 − 121

48
q
21
8 − 3q

29
8

 ,


25

9216
+ 11

192
q + 15

64
q2 + 29

48
q3 + 17161

9216
q4 + 629

192
q5

1
9216

q
−3
8 − 143

9216
q
5
8 − 11

96
q
13
8 − 4943

9216
q
21
8 − 39

32
q
29
8

1
18432

q
−1
2 − 1

384
q
1
2 + 889

9216
q
3
2 + 27

64
q
5
2 + 503

384
q
7
2

1
9216

q
−3
8 − 143

9216
q
5
8 − 11

96
q
13
8 − 4943

9216
q
21
8 − 39

32
q
29
8

 ,+O(q
5
) .

(11.13)

Then for

P (q) =


1 0 0 0

−q−3 − q−2 − q−1 q−3 + q−2 + 2q−1 + 1 + q −q2 − q3 − q4 − q5 − q12 q12

q−5 + q−4 + q−3 −q−5 − 2q−4 − 2q−3 − 2q−2 − q−1 + q3 1 + 2q + 2q2 + q3 + q4 + q10 + q11 −q10 − q11

−q−6 − q−1 q−6 + q−5 + q−4 − q2 −q−1 − 1− q − q9 q9

 (11.14)

we have
F (q) = P (q)


1 0 0 0
0 1 0 0

0 0 q−4 0

0 0 0 q−12

G(q
−3/8

; q)Θ0(q) , (11.15)

a matrix with columns


1 + q2 + q3 + q4

1 + q3 + q4

1 + q4

1

 ,


− 1

4
q + 1

4
q2 + 1

2
q3

1
4
− 1

2
q − 1

2
q2 + 3

4
q3 + 1

2
q4

1
4
− 1

4
q − 1

2
q2 − 1

4
q3 + 1

2
q4

− 1
4
q−1 + 3

4
− 3

4
q2 − 1

2
q3 − 3

4
q4

 ,


− 1

96
+ 7

32
q + 67

48
q2 + 173

96
q3 + 299

96
q4

1
48

+ 5
16
q + 5

8
q2 + 85

48
q3 + 263

96
q4

5
24

+ 5
32
q + 9

16
q2 + 19

32
q3 + 287

96
q4

1
32
q−1 + 1

3
− 1

16
q + 21

32
q2 + 3

4
q3 + 43

32
q4

 ,


1

18432
− 5

2048
q + 725

9216
q2 + 6835

18432
q3 + 21253

18432
q4

− 1
9216

+ 13
1024

q + 103
1536

q2 + 3107
9216

q3 + 15745
18432

q4

13
4608

+ 275
6144

q + 153
1024

q2 + 463
2048

q3 + 15673
18432

q4

− 1
6144

q−1 + 41
2304

+ 55
1024

q + 449
2048

q2 + 221
768

q3 + 1447
2048

q4

 ,

(11.16)
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where the first column is given by f0(q), f1(q), f2(q), f3(q). Therefore, from the proof of
Theorem 5 in Section 10.1 we see that the cocycle from equation (10.28) Ω is given by

ΩS(0; τ) = F (q̃)


1 0 0 0
0 τ 0 0
0 0 τ 2 0
0 0 0 τ 4


−1

F (q)−1 . (11.17)

However, numerically we have observed that for τ just above the positive reals

s(Φ̂)(τ) = F (q̃)


1 0 0 0
0 τ 0 0
0 0 τ 2 0
0 0 0 τ 4


−1

F (q)−1


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 q


−1

= ΩS(0; τ)


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 q


−1

.

(11.18)
We can apply a similar numerical tests for τ just above the negative reals to find that

s(Φ̂)(τ) = F (q̃)


1 0 0 0
0 −τ 0 0
0 0 τ 2 0
0 0 0 τ 4


−1

F (q)−1


0 0 1 0
1 0 0 0
0 0 0 q
0 1 0 0


−1

= Ω−S(0; τ)


0 0 1 0
1 0 0 0
0 0 0 q
0 1 0 0


−1

.

(11.19)

Example 62 (Half surgery on the figure eight knot and Borel resummation). Using Borel–
Padé–Laplace, we can numerically find the quantum modular behaviour for τ ∈ R>0 and
τ ∈ R<0. This can be done with q–series, functions at roots of unity, or q−1 series. There
are no Stokes lines on the reals so we only need to do this once in this example. The most
practical way to do this is with functions at q in roots of unity as q̃ = O(1) in this case.
Then the quantum modularity can be computed without having to deal with exponentially
small corrections. Numerical computations led to the functions Xρ of equation (8.88). We
can write this in terms of the module associated to (6.91) with n = 0. This is stored in the
matrix

P (q)(1− q)q4 =

1 q3 + 2q2 −q5 + 2q4 − q3 − q2 −q7 − q6 − 2q5 − q4 q8 + 2q5 q10 + q9 + q7 −q10 − q8 −q12

1 q3 + 2q2 q4 − q3 − q2 −q6 − 2q5 − 2q4 q7 + 2q5 q9 + q8 + q7 −q9 − q7 −q11

q q4 + q3 + q2 −q3 −q7 − 2q6 − q5 − q4 q8 + 2q6 q10 + q9 + q8 −q10 − q8 −q12

0 −q2 + q −q4 + q3 q5 − q3 −q5 + q4 −q7 + q6 0 0

1 2q3 + q2 q5 − q3 − q2 −q7 − q6 − 3q5 2q6 + q5 q10 + q9 + q8 + q7 − q6 −q9 − q8 −q12

1 2q3 + q2 q5 + q4 − 2q3 − q2 −q7 − q6 − 3q5 q6 + 2q5 q10 + q9 + q8 + q7 − q6 −q9 − q8 −q12

0 0 0 −q5 + q4 0 0 0 0

1 2q3 + q2 q5 − q3 − q2 −q7 − q6 − 3q5 q6 + 2q5 q10 + q9 + q8 + q7 − q6 −q9 − q8 −q12


(11.20)

In particular,
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Xρ0(q)
Xρ1(q)
Xρ2(q)
Xρ3(q)
Xρ4(q)
Xρ5(q)
Xρ6(q)
Xρ7(q)


= P (q)



W−3(q)
W−2(q)
W−1(q)
W0(q)
W1(q)
W2(q)
W3(q)
W4(q)


(11.21)

Then considering the eight by eight matrix of q series from Theorem 8 we find numerically
the conjectural identities for τ on a small angle just above the positive reals

Zm(q̃) = s(Φ̂m)(τ)SI(q) (11.22)

where

SI (q) =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


P (q)Z−3(q)

×



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0
0 τ 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



(11.23)

as τ on a small angle just above the negative real

Zm(q̃) = s(Φ̂m)(τ)SII(q) (11.24)

where

SII (q) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


P (q)Z−3(q)

×



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1





1 0 0 0 0 0 0 0
0 τ 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



(11.25)

as τ on a small angle just below the negative reals

Zm(q̃) = s(Φ̂m)(τ)SIII(q) (11.26)
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where

SIII (q) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


P (q)Z−3(q)

×



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 τ−2 0 0 0 0 0 0

0 0 0 τ−1 0 0 0 0

0 0 τ−1 0 0 0 0 0

0 0 0 0 τ−1 0 0 0

0 0 0 0 0 0 τ−1 0

0 0 0 0 0 τ−1 0 0

0 0 0 0 0 0 0 τ−1



(11.27)

as τ on a small angle just below the positive reals

Zm(q̃) = s(Φ̂m)(τ)SIV (q) (11.28)

where

SIV (q) =



−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


P (q)Z−3(q)

×



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0

0 τ−2 0 0 0 0 0 0

0 0 0 τ−1 0 0 0 0

0 0 τ−1 0 0 0 0 0

0 0 0 0 τ−1 0 0 0

0 0 0 0 0 0 τ−1 0

0 0 0 0 0 τ−1 0 0

0 0 0 0 0 0 0 τ−1



(11.29)

11.2 Computations near R give Stokes phenomenon?

Again noticed in [69], using quantum modular forms to study Borel resummation gives pow-
erful tools to study Stoke phenomenon. In [69], there are some basic structural conjectures
that relate to the Stokes phenomenon and with their assumption along with quantum mod-
ular forms one can compute conjectural formulae for all of the Stokes behaviour. To begin
we will briefly give the conjectures in regards to the behaviour of the Stokes phenomenon
for the asymptotics of certain q–hypergeometric functions.

Conjecture 13. [67, 69]2 Suppose that Φ̂ρ(τ) is an asymptotic series around τ ∼ ∞ asso-
ciated to a q–hypergeometric sum with discrete characteristic variety R with ρ ∈ R. Then if

2The authors that gave this conjecture did not focus directly on q–hypergeometric functions so cannot
be blamed if this does not hold more generally. However, this appears to be a natural extension of their
conjecture as much of the structure does not seem to stem directly from knots.
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Vρ is the associated critical value so that

Φ̂ρ(2πi/τ) = e
( Vρ

(2πi)2
τ
)

Φρ(2πi/τ) , (11.30)

the Stokes lines of the series Φ̂ρ(τ) are located on the rays given by

Vρ′ − Vρ + 4π2k

2πi
, (11.31)

forming a Peacock pattern and the Stokes behaviour is determined by an integer Sρ,ρ′,k ∈ Z
such that if

arg(τ) = arg
(Vρ′ − Vρ + (2πi)2k

2πi

)
, (11.32)

and s+, s− represent the Borel resummation with contours with a slight positive shift for
the argument of the contour and a slight negative shift for the argument of the contour
respectively, we have

s+(Φ̂ρ)(2πi/τ)− s−(Φ̂ρ)(2πi/τ) = Sρ,ρ′,kq
kΦ̂ρ′ , (11.33)

where of course q = e((2πi)2τ/(2πi)2).

This conjecture allows for extremely powerful applications. Importantly, if we send τ to
infinity horizontally just above the positive reals then using quantum modularity and the
conjectural identities with the state integrals we can compute a canonical basis of the q–
holonomic module. Then, if we do the same over the negative reals we will again find
another basis however this will in general be different. We can in theiry dot he same on any
ray and in each sector find a basis of the q–holonomic module. However, this implies that
taking the quotient of the matrix valued quanttum modular form on adjacent sectors will
give an elementray matrix wich is the identity besides from the ρ, ρ′ entry where will with
find a term

Sρ,ρ′,kq
k . (11.34)

The beautiful result is that we can take products over all sectors in the upper or lower half
planes and find that the matrix will become a matrix of q–series with each entry and power
of q storing the information of the Stokes constant. Therefore, we get the following result.

Corollary 13. Assuming that conjectures 12 and 13 are true, the generating series of
Stokes constants is the quotient of matrices of quantum modular forms i.e. the original
q–hypergeometric sums that gave the asymptotics series to begin with.

We can now apply this to give conjectural generating series for Stokes constants for the
previous two examples.
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Example 63 (Stokes constants and the A = 4 Nahm sum). Considering equation (11.18)
and equation (11.19), we see that using analytic continuation the Borel resummation just
above the positive reals sI(Φ̂) and just above the negative reals sII(Φ̂)(τ) are related by mul-
tiplication by the matrix

sI(Φ̂)(τ)−1sII(Φ̂)(τ)

=


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 q

F (q)


1 0 0 0
0 τ 0 0
0 0 τ2 0
0 0 0 τ4

F (q̃)−1F (q̃)


1 0 0 0
0 −τ 0 0
0 0 τ2 0
0 0 0 τ4


−1

F (q)−1


0 0 1 0
1 0 0 0
0 0 0 q
0 1 0 0


−1

=


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 q

F (q)


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

F (q)−1


0 0 1 0
1 0 0 0
0 0 0 q
0 1 0 0


−1

= Id +


−q − 2q2+ 1 + q + q2+ 1− q2+ −1− q+

q2+ −q − q2+ −q+ q + q2+
−q − q2+ 1− q2+ −q − 2q2+ 2q2+

q+ −1 + q + q2+ 2q + q2+ −q − 2q2

+O(q3)

(11.35)
The constants of this expansion exactly agree with the matrix we computed in equation (4.134)
if we only consider the terms with

=
(VCφ − VCρ

2πi

)
> 0 . (11.36)

It also supplies a guess for the ? and 1 and −1.

Remark 28. Notice that from just above the positive reals to negative reals we pass through
infinitely many singularities, which gives rise toe the full q–series. Also note the extremely
important point that we need the S and −S cocycles to compute the Stokes phenomenon.
Indeed, the Stokes constants would be quite trivial if we did not have the matrix coming from
the difference between the S and −S cocycles which in the previous examples was given by

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 . (11.37)

Example 64 (Half surgery on the figure eight knot and Stokes constants). Therefore, as-
suming the conjecture on the behaviour of the Stokes phenomenon and our conjectural iden-
tities for the Borel resummation, we can compute the generating series of Stokes matrices
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as quotients of these matrices. Therefore, the Stokes constants in the upper half plane have
generating functions

SII (q)SI (q)
−1 − I

=



0 0 0 0 0 0 0 0

−1 + q + 3q2 −q − 2q2 1 + q −q2 q + 2q2 −1− q + q2 −1 + 3q2 −1 + 3q2

q − q2 q2 −q − q2 0 −q2 q + q2 q q

−1 + 2q + q2 −q − q2 1 −q2 q + q2 −1 + q2 −1 + q + 2q2 −1 + q + 2q2

1− 2q − q2 q + q2 −1 q2 −q − q2 1− q2 1− q − 2q2 1− q − 2q2

−q + q2 −q2 q + q2 0 q2 −q − q2 −q −q
1− 3q − q2 q −1 + q + 2q2 q2 −q 1− q − 3q2 −2q − 3q2 −2q − 3q2

1− 3q − q2 q −1 + q + 2q2 q2 −q 1− q − 3q2 −2q − 3q2 −2q − 3q2


+ O(q

3
)

(11.38)

the Stokes constants in the lower half plane are given by

SIV (q
−1

)SIII (q
−1

)
−1 − I

=



0 0 0 0 0 0 0 0

0 −q − 2q2 q2 −q − q2 q + q2 −q2 −q −q
−1 1 + q −q − q2 1 −1 q + q2 1− q − 2q2 1− q − 2q2

−q + q2 −q2 0 −q2 q2 0 −q2 −q2

−q − q2 q + 2q2 −q2 q + q2 −q − q2 q2 q q

−2q2 −1− q + q2 q + q2 −1 + q2 1− q2 −q − q2 −1 + q + 3q2 −1 + q + 3q2

2q2 1− 3q2 −q 1− q − 2q2 −1 + q + 2q2 q −2q − 3q2 −2q − 3q2

q + 2q2 1− 3q2 −q 1− q − 2q2 −1 + q + 2q2 q −2q − 3q2 −2q − 3q2


+ O(q

3
)

(11.39)

These first few coefficients agree with numerical calculations of the growth of the coefficients.

11.3 Questions for the future

It seems that one of the most important aspects that will aid in the proofs of these conjectures
is that the Borel resummation of these asymptotic series satisfy q̃–difference equations. This
appears in [75] as a result of explicit formulae for the Borel transform, however, in general
for these q–hypergeometric functions is still unclear.

From the perspective of 3–manifolds, these Stokes constants are clearly interesting invariants
of three–manifolds. Conjecturally [69], for knots this agrees with the 3d index [44] however
this theory does not include the trivial connection as long been noticed. It would be interest-
ing if there was some way to define q–series invariants that agreed with the Stokes constants
for all asymptotic series.

In a different direction, it would be extremely interesting if there was a mathematical defi-
nition for the holomorphic blocks. These holomorphic blocks factorise state integrals of [8]
but moreover they factorise the state integrals of [74] also they appear as integrals in [21].
Therefore, they seem to store not only the information of the Borel resummation of asymp-
totic series but the Stokes constants as well. Indeed, these holomorphic blocks should give
rise to the quantum modular forms as we have taken in examples of simple three–manifolds.

Hopefully, this thesis has convinced the reader that many q–hypergeometric functions are
quantummodular forms. It is of course of interest to understand the class of q–hypergeometric
functions that are quantummodular forms. It seems possible that all proper q–hypergeometric
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functions are in fact quantum modular forms and this behaviour is extremely general. The
are various approaches that may shed light on this question for future work.

Of course one of the extremely interesting questions is still in the formulation and proof
of Nahm’s conjecture relating q–hypergeometric sums to modular forms. A beautiful com-
bination of themes would be if an independent construction of Stokes constants and their
triviality would lead to insights into the underlying structures associated to this conjecture.
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Presets
The following functions should be loaded as they are used throughout all the following code.

Code 1 (The presets).

1 E(x)=exp (2*Pi*I*x)
2 {DD(k)=local(t);if(k,t=2^(2*k+sum(l=0,log(k)/log(2)+1,floor(k/2^l)));
3 forprime(p=3,k+2,t=t*p^(sum(l=0,log(k/(p-2))/log(p)+1,floor(k/(p-2)/p^l)))

);t,1)};
4 {Gf(q,n,N)=
5 local(qk ,t,s);
6 eee=exp(eps+O(eps^(n+1)));qk=1;t=1;s=1;
7 for(k=1,N,qk=qk*q;t=-t*qk/(1-qk)*eee;s=s+t);
8 -(-1)^n*bernfrac(n)/n/2-n!* polcoeff(log(s/polcoeff(s,0,eps)),n,eps)}
9 vecdiff(x)=vector(length(x) -1,j,x[j+1]-x[j]);

10 vecdiffk(x,k)=local(tv);tv=x;for(j=1,k,tv=vecdiff(tv));tv;
11 lim(x,n,k)=vecdiffk(vector(k+1,j,(j+n)^k*x[j+n-1]),k)[1]/k!;
12 {pollim(x,n,k)=local(tfo);tfo=vector(length(x));
13 for(j=n,n+k+1,tfo[j]=(x[j+1]/x[j]-1)*j);lim(tfo ,n,k)};
14 {explim(x,n,k)=local(tl);tl=vector(length(x));
15 for(j=n,n+k+1,tl[j]=x[j+1]/x[j]);lim(tl,n,k)};
16 {asymp(x,n,k)=local(t1,t2 ,t3 ,t4 ,t5);t1=explim(x,n,k);t2=vector(length(x));
17 for(j=n,n+k+1,t2[j]=x[j]/t1^j);t3=pollim(t2 ,n,k);t4=vector(length(x));
18 for(j=n,n+k,t4[j]=x[j]/t1^j/j^t3);t5=lim(t4 ,n,k);[t1,t3,t5]}
19 {oscserv(a,C,d,x,t,alpha =0)=
20 local(ta ,llC);llC=length(C);ta=a;
21 for(k=1,length(a),ta[k]=ta[k]*(x+k+alpha)^t);
22 for(j=1,llC ,for(k=1,length(ta),ta[k]=ta[k]*C[j]^(-(x+k+alpha))*(x+k+alpha

)^(-d[j]));for(j=1,t,ta=vecdiff(ta));for(k=1,length(ta),ta[k]=ta[k]*C[j
]^(x+k+alpha)*(x+k+alpha)^(d[j])));

23 ta/t!}
24 {asympv(a,C,d,x,t,alpha =0)=
25 local(lC ,taa ,tm);lC=length(C);
26 taa=vector(lC*(t+1),k,a[x+k]);
27 taa=oscserv(taa ,C,d,x,t,alpha);
28 tm=matrix(lC,lC);
29 for(j=1,lC,tm[,j]= oscserv(vector(lC*(t+1),k,C[j]^(x+k+alpha)*(x+k+alpha)^

d[j]),C,d,x,t)~);
30 tm^(-1)*taa~}
31 {oscser(x,n,k,z)=local(t);t=vector(floor(length(x)/2));
32 for(j=n,n+k+1,t[j]=sum(l=0,j,binomial(j,l)*x[j+l]*z^(j-l)));t}
33 {asymposc(x,n,k,z)=t1=oscser(x,n,k,z);t2=asymp(t1 ,n,k);
34 [(-z+sqrt(z^2+4*t2[1]))/2,t2[2],
35 t2[3]/(1+(( -z+sqrt(z^2+4* t2[1]))/2)/((-z+sqrt(z^2+4* t2[1]))/2+z))^t2[2];
36 (-z-sqrt(z^2+4* t2[1]))/2,t2[2],
37 t2[3]/(1+(( -z-sqrt(z^2+4* t2[1]))/2)/((-z-sqrt(z^2+4* t2[1]))/2+z))^t2[2]]}





Appendix A

Three dimensional topology

A.1 Representations, Neumann–Zagier matrices and vol-
umes

Code 2 (Representation of the fundamental group of 41).

1 sage: from snappy import Manifold
2 sage: M=Manifold("4_1")
3 sage: p=M.ptolemy_variety (2,’all’).compute_solutions ()
4 sage: G = M.fundamental_group(simplify_presentation = False)
5 sage: G.peripheral_curves ()
6 [(’Ab’, ’cAcBaCbAb ’)]
7 sage: p.evaluate_word(’a’, G)
8 [[], [[[Mod(2, x^2 - x + 1), Mod(1, x^2 - x + 1)], [Mod(-1, x^2 - x + 1),

Mod(0, x^2 - x + 1)]]]]
9 sage: p.evaluate_word(’b’, G)

10 [[], [[[Mod(-x + 2, x^2 - x + 1), Mod(1, x^2 - x + 1)], [Mod(-1, x^2 - x +
1), Mod(0, x^2 - x + 1)]]]]

11 sage: p.evaluate_word(’c’, G)
12 [[], [[[Mod(-x + 2, x^2 - x + 1), Mod(1, x^2 - x + 1)], [Mod(x, x^2 - x +

1), Mod(x, x^2 - x + 1)]]]]
13 sage: p.evaluate_word(’Ab’, G)
14 [[], [[[Mod(1, x^2 - x + 1), Mod(0, x^2 - x + 1)], [Mod(-x, x^2 - x + 1),

Mod(1, x^2 - x + 1)]]]]
15 sage: p.evaluate_word(’cAcBaCbAb ’, G)
16 [[], [[[Mod(-1, x^2 - x + 1), Mod(0, x^2 - x + 1)], [Mod (2*x - 4, x^2 - x

+ 1), Mod(-1, x^2 - x + 1)]]]]

Code 3 (Neumann–Zagier matrices for 52).

1 In[1]: M=Manifold("5_2")

381
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2 In[2]: M.gluing_equations ()
3 Out [2]:
4 matrix ([[ 1, 0, 1, 1, 2, 0, 1, 0, 1],
5 [ 0, 1, 1, 0, 0, 2, 0, 1, 1],
6 [ 1, 1, 0, 1, 0, 0, 1, 1, 0],
7 [-1, 0, 0, 0, 0, 1, 0, 0, 0],
8 [ 2, 0, -3, 1, 0, -2, 0, 0, 1]])

Code 4 (Neumann–Zagier matrices for 74).

1 In[1]: M=Manifold("7_4")
2 In[2]: M.gluing_equations(form=’rect’)
3 Out [2]:
4 [([1, 1, 1, 0, -1, 0], [0, -1, -1, 0, 1, 0], -1),
5 ([-1, -1, 0, -1, 0, -1], [0, 0, 0, 1, -1, 1], 1),
6 ([-1, 1, 0, 0, 1, 1], [1, 0, -1, -1, 0, 0], -1),
7 ([0, 0, -1, 1, 0, 0], [-1, 0, 1, 0, -1, 0], -1),
8 ([1, -1, -1, 1, 0, -1], [0, 1, 1, -1, 0, 0], -1),
9 ([0, 0, 1, -1, 0, 1], [0, 0, 0, 1, 1, -1], 1),

10 ([2, 1, 2, 0, -1, 1], [0, -1, -1, 0, 2, -1], 1),
11 ([-2, 0, -2, 0, 1, -2], [0, -1, 3, 2, -1, 2], -1)]

Code 5 (Ptolemy variety for 74).

1 sage: from snappy import Manifold
2 sage: M=Manifold(’7_4’)
3 sage: p=M.ptolemy_variety (2,’all’).compute_solutions ()
4 sage: zs=p.cross_ratios ()
5 sage: zs [1][0]
6 CrossRatios ({
7 ’z_0000_0 ’: Mod(-x^3 - 2*x^2 - x, x^4 + 3*x^3 + 2*x^2 + 1), ...
8 ’z_0000_1 ’: Mod(-x^3 - 3*x^2 - 2*x + 1, x^4 + 3*x^3 + 2*x^2 + 1), ...
9 ’z_0000_2 ’: Mod(x + 2, x^4 + 3*x^3 + 2*x^2 + 1), ...

10 ’z_0000_3 ’: Mod(-x^3 - 2*x^2 - x, x^4 + 3*x^3 + 2*x^2 + 1), ...
11 ’z_0000_4 ’: Mod(x + 1, x^4 + 3*x^3 + 2*x^2 + 1), ...
12 ’z_0000_5 ’: Mod(-x^3 - x^2, x^4 + 3*x^3 + 2*x^2 + 1), ...
13 }, is_numerical = False , ...)
14 sage: zs [1][1]
15 CrossRatios ({
16 ’z_0000_0 ’: Mod(-1/2*x^2 + x + 3/2, x^3 - 2*x^2 - x - 2), ...
17 ’z_0000_1 ’: Mod(-1/2*x^2 + 3/2*x, x^3 - 2*x^2 - x - 2), ...
18 ’z_0000_2 ’: Mod(-1/4*x^2 + 3/4*x + 1/2, x^3 - 2*x^2 - x - 2), ...
19 ’z_0000_3 ’: Mod(x, x^3 - 2*x^2 - x - 2), ...
20 ’z_0000_4 ’: Mod(x + 1, x^3 - 2*x^2 - x - 2), ...
21 ’z_0000_5 ’: Mod(-1/2*x^2 + 3/2*x, x^3 - 2*x^2 - x - 2), ...
22 }, is_numerical = False , ...)
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Code 6 (Extended Bloch group elements for 52).

1 ? z1=polroots(x^3-2*x^2+3*x-1);
2 ? z2=vector(3,j,z1[j]^2-z1[j]+2);
3 ? z3=z1;
4 ? Z1(j,p,q)=[log(z1[j])+p*Pi*I,-log(1-z1[j])+q*Pi*I,-log(z1[j])+log(1-z1[j

])-p*Pi*I-q*Pi*I]
5 ? Z2(j,p,q)=[log(z2[j])+p*Pi*I,-log(1-z2[j])+q*Pi*I,-log(z2[j])+log(1-z2[j

])-p*Pi*I-q*Pi*I]
6 ? Z3(j,p,q)=[log(z3[j])+p*Pi*I,-log(1-z3[j])+q*Pi*I,-log(z3[j])+log(1-z3[j

])-p*Pi*I-q*Pi*I]
7 ? round((Z1(3,p1,q1)[1]+Z1(3,p1,q1)[3]+Z2(3,p2 ,q2)[1]+2* Z2(3,p2,q2)[2]+Z3

(3,p3,q3)[1]+Z3(3,p3 ,q3)[3])/Pi/I*10^10) /10^10
8 /* = -q1 + (p2 + (2*q2 - q3)) */
9 ? round((Z1(3,p1,q1)[2]+Z1(3,p1,q1)[3]+2* Z2(3,p2 ,q2)[3]+Z3(3,p3,q3)[2]+Z3

(3,p3,q3)[3])/Pi/I*10^10) /10^10
10 /* = -p1 + (-2*p2 + (-2*q2 + (-p3 - 2))) */
11 ? round((Z1(3,p1,q1)[1]+Z1(3,p1,q1)[2]+Z2(3,p2 ,q2)[1]+Z3(3,p3,q3)[1]+Z3(3,

p3 ,q3)[2])/Pi/I*10^10) /10^10
12 /* = p1 + (q1 + (p2 + (p3 + (q3 + 2)))) */
13 ? round((-Z1(3,p1,q1)[1]+Z2(3,p2,q2)[3])/Pi/I*10^10) /10^10
14 /* = -p1 + (-p2 + (-q2 - 1)) */
15 ? round ((2*Z1(3,p1,q1)[1]-3*Z1(3,p1,q1)[3]+Z2(3,p2 ,q2)[1] -2*Z2(3,p2 ,q2)

[3]+Z3(3,p3,q3)[3])/Pi/I*10^10) /10^10
16 /* = 5*p1 + (3*q1 + (3*p2 + (2*q2 + (-p3 + (-q3 + 4))))) */

Code 7 (Complexified volumes of 52).

1 ? R(z,p,q,s=0)=log(z)*log(1-z)/2-if(s==0, intnum(x=0,1,log(1-x*z)/x),intnum
(x=0,1,log(1-(z*(1-exp(-sign(s)*Pi*I*x))/2))/(z*(1-exp(-sign(s)*Pi*I*x)
)/2)*((z*(sign(s)*Pi*I*exp(-sign(s)*Pi*I*x))/2))))+Pi*I/2*(p*log(1-z)+q
*log(z))-Pi^2/6

2 ? z1=polroots(x^3-2*x^2+3*x-1);
3 ? z2=vector(3,j,z1[j]^2-z1[j]+2);
4 ? z3=z1;
5 ? R(z1[3],p3,q3)+R(z2[3],-2*p3 - 2*q3 - 2,p3 + 2*q3 + 1)+R(z3[3],p3,q3)
6 /* = (0.E-211 - 4.158637801 E -212*I)*p3 + (( -9.869604401 - 5.940911145 E

-212*I)*q3 + ( -6.845476025 + 2.828122088*I)) */
7 ? R(z1[1],p3,q3)+R(z2[1],-2*p3 - 2*q3,p3 + 2*q3 + 1,-1)+R(z3[1],p3,q3)
8 /* = (9.8696 - 2.3764 E-212*I)*p3 + ((9.8696 - 4.7527 E-212*I)*q3 +

( -1.1135 - 3.5645 E-212*I)) */

Code 8 (Complexified volumes of 41, 52 and 74).

1 sage: from snappy import Manifold
2 sage: pari.set_real_precision (20)



384 APPENDIX A. THREE DIMENSIONAL TOPOLOGY

3 sage: Manifold("4_1").ptolemy_variety (2,’all’).compute_solutions ().
complex_volume_numerical ()

4 [[], [[2.0298832128193072500 - 3.898895295161564381 E-21*I,
-2.0298832128193072500 - 3.898895295161564381 E-21*I]]]

5 sage: Manifold("5_2").ptolemy_variety (2,’all’).compute_solutions ().
complex_volume_numerical ()

6 [[], [[8.863112687504426153 E-20 - 0.53147951437430242645*I
,2.8281220883307831628 + 0.26573975718715121322*I,
-2.8281220883307831628 + 0.26573975718715121322*I]]]

7 sage: Manifold("7_4").ptolemy_variety (2,’all’).compute_solutions ().
complex_volume_numerical ()

8 [[], [[2.0298832128193072500 + 4.526166530478580699 E-20*I,
-2.0298832128193072500 + 4.526166530478580699 E-20*I
,2.0298832128193072500 + 2.2448517331957115278 E-20*I,
-2.0298832128193072500 + 2.2448517331957115278 E-20*I],
[9.542644773460495573 E-20 + 0.78719857113403445283*I,
-5.1379412018734177699 + 0.42886774785709599187*I,
5.1379412018734177699 + 0.42886774785709599187*I]]]

A.2 Loop invariants

Code 9 (2–loop invariants of 41).

1 h;w;A=[1 ,1;1 ,0];B=[-1,-1;0,-1];nu =[0;0];f=[0;0]; ff =[0;0];z=[Mod(w,w^2-w+1)
,Mod(w,w^2-w+1)];zz=vector(length(z),j,1/(1-z[j]));zzz=vector(length(z)
,j,1-1/z[j]);

2 PP=h*(-B^(-1)*A+matdiagonal(zz))^(-1);
3 Gam(h,ell ,j,NN)=(-1)^ell*sum(p=if(ell==1,1)+if(ell ==2 ,1),NN,if(p==1,1/2,

bernfrac(p))*h^(p-1)/p!* polylog(2-p-ell ,z[j]^(-1)))+if(ell ==1 , -1/2*(B
^(-1)*nu)[j,1])

4 Gam0(NN)=if(NN==1,1/2,if(Mod(NN ,2)==Mod(0,2),bernvec(NN/2)[NN /2+1]))/NN!*
sum(j=1,length(z),polylog(2-NN,z[j]^(-1)))+if(NN==2 ,1/8*(f~*B^(-1)*A*f)
[1,1])

5 S2(NN)=Gam0 (2)+polcoeff(sum(i=1,length(z) ,1/8*Gam(h,4,i,NN)*PP[i,i]^2+1/2*
Gam(h,2,i,NN)*PP[i,i]+sum(j=1,length(z) ,1/8*PP[i,i]*Gam(h,3,i,NN)*PP[i,
j]*Gam(h,3,j,NN)*PP[j,j]+1/12* Gam(h,3,i,NN)*PP[i,j]^3* Gam(h,3,j,NN)
+1/2* Gam(h,1,i,NN)*PP[i,j]*Gam(h,3,j,NN)*PP[j,j]+1/2* Gam(h,1,i,NN)*PP[i
,j]*Gam(h,1,j,NN))) ,1,h)

6 S2(2)
7 /* = Mod (11/108*w - 5/54, w^2 - w + 1)*/

Code 10 (2–loop invariant of 41(1, 2)).

1 h;w;A=[1 ,1;1 ,0];B=[-1,-1;0,-1];C=[0 ,1];D=[0,-1];R=matrix(2,2,i,j,2*2*if(i
==2,1,0)*(B^(-1))[j ,2]/(1+2*2*(D*B^(-1))[2]));nu =[0;0];f=[0;0]; ff
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=[0;0]; z2=Mod(w,-1 + 8*w - 27*w^2 + 49*w^3 - 50*w^4 + 27*w^5 - 7*w^6 +
3*w^7 - 4*w^8 + 4*w^9 - 2*w^10 - w^11 + w^13 + w^14);z1=-136*z2^13 -
229*z2^12 - 156*z2^11 + 32*z2^10 + 299*z2^9 - 334*z2^8 + 318*z2^7 -
191*z2^6 + 821*z2^5 - 3112*z2^4 + 4668* z2^3 - 3468* z2^2 + 1309*z2 -
204;z=[z1,z2];zz=vector(length(z),j,1/(1-z[j]));zzz=vector(length(z),j
,1-1/z[j]);x= -154+896*z2 -2142* z2 ^2+2595* z2^3 -1561*z2 ^4+395* z2^5 -123*z2
^6+177* z2^7 -202*z2 ^8+147* z2 ^9+56* z2^10 -28*z2^11 -85*z2^12 -63*z2^13;

2 matdet ((A-R)*[1-1/z[1] ,0;0,1 -1/z[2]]+B*[1/z[1] ,0;0 ,1/z[2]]) *(1+2*2*(D*B
^(-1))[2])/(x+2+1/x)

3 /* Mod (3711*w^13 + 5779*w^12 + 3238*w^11 - 1863*w^10 - 8408*w^9 + 10189*w
^8 - 9190*w^7 + 6030*w^6 - 22641*w^5 + 87584*w^4 - 136845*w^3 + 105904*
w^2 - 41514*w + 6703, w^14 + w^13 - w^11 - 2*w^10 + 4*w^9 - 4*w^8 + 3*w
^7 - 7*w^6 + 27*w^5 - 50*w^4 + 49*w^3 - 27*w^2 + 8*w - 1) */

4 PP=h*matrix(3,3,i,j,if(max(i,j) <3,(-B^(-1)*A+matdiagonal(zz))[i,j],if([i,j
]==[3 ,3] , -(2*1/2+4*(D*B^(-1))[2]) ,2*(B^(-1))[if(i==3,j,i) ,2])))^(-1)

5 Gam(h,ell ,j,NN)=if(j==3,if(ell==1,(f~*B^(-1))[1 ,2]+1/2) -(-1)^ell*polylog
(1-ell ,-1/x) ,(-1)^ell*sum(p=if(ell==1,1)+if(ell ==2,1),NN,if(p==1,1/2,if
(Mod(p,2)==Mod(0,2),bernvec(p/2)[p/2+1]))*h^(p-1)/p!* polylog(2-p-ell ,z[
j]^(-1)))+if(ell ==1 , -1/2*(B^(-1)*nu)[j,1]))

6 Gam0(NN)=if(NN==1,1/2, bernfrac(NN))/NN!*sum(j=1,length(z),polylog(2-NN,z[j
]^( -1)))+if(NN==2 ,1/8*(f~*B^(-1)*A*f)[1,1])

7 S2(NN)=Gam0 (2)+polcoeff(sum(i=1,length(z)+1 ,1/8* Gam(h,4,i,NN)*PP[i,i
]^2+1/2* Gam(h,2,i,NN)*PP[i,i]+sum(j=1,length(z)+1 ,1/8*PP[i,i]*Gam(h,3,i
,NN)*PP[i,j]*Gam(h,3,j,NN)*PP[j,j]+1/12* Gam(h,3,i,NN)*PP[i,j]^3* Gam(h
,3,j,NN)+1/2* Gam(h,1,i,NN)*PP[i,j]*Gam(h,3,j,NN)*PP[j,j]+1/2* Gam(h,1,i,
NN)*PP[i,j]*Gam(h,1,j,NN))) ,1,h)

8 S2(2)
9 /* Mod ( -103985214498148/52058057626129*w^13 -

184056457134922/52058057626129*w^12 - 542317054615207/208232230504516*w
^11 + 59505081205693/208232230504516*w^10 +
712734937701865/156174172878387*w^9 - 893320433832741/208232230504516*w
^8 + 2799985419301201/624696691513548*w^7 -
1552744881772601/624696691513548*w^6 + 617002533395308/52058057626129*w
^5 - 6997401920285924/156174172878387*w^4 +
40417653146722771/624696691513548*w^3 -
9551945238699689/208232230504516*w^2 +
2570480289595373/156174172878387*w - 1027130175419887/416464461009032 ,
w^14 + w^13 - w^11 - 2*w^10 + 4*w^9 - 4*w^8 + 3*w^7 - 7*w^6 + 27*w^5 -
50*w^4 + 49*w^3 - 27*w^2 + 8*w - 1) */

10 xxi=Mod (119 -770*w+2004*w^2 -2599*w^3+1647*w^4 -420*w^5+116*w^6 -171*w^7+192*w
^8 -167*w^9 -49*w^10+50*w^11+104*w^12+69*w^13,w^14 + w^13 - w^11 - 2*w^10
+ 4*w^9 - 4*w^8 + 3*w^7 - 7*w^6 + 27*w^5 - 50*w^4 + 49*w^3 - 27*w^2 +

8*w - 1)
11 xxi^7-xxi^6-2*xxi ^5+6* xxi ^4-11* xxi ^3+6* xxi ^2+3*xxi -1
12 /* Mod(0, w^14 + w^13 - w^11 - 2*w^10 + 4*w^9 - 4*w^8 + 3*w^7 - 7*w^6 +

27*w^5 - 50*w^4 + 49*w^3 - 27*w^2 + 8*w - 1) */
13 matdet ((A-R)*[1-1/z[1] ,0;0,1 -1/z[2]]+B*[1/z[1] ,0;0 ,1/z[2]]) *(1+2*2*(D*B

^(-1))[2])/(x+2+1/x) -(74+66*xxi -133* xxi ^2+74* xxi ^3 -31*xxi^4-15* xxi
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^5+12* xxi^6)
14 /* Mod(0, w^14 + w^13 - w^11 - 2*w^10 + 4*w^9 - 4*w^8 + 3*w^7 - 7*w^6 +

27*w^5 - 50*w^4 + 49*w^3 - 27*w^2 + 8*w - 1) */
15 S2(2) +1/6 -(1497746+1345119* xxi -3675733* xxi ^2+2082815* xxi ^3 -839488* xxi

^4 -283405* xxi ^5+383432* xxi^6) /24/(74+66* xxi -133* xxi ^2+74* xxi ^3 -31*xxi
^4-15* xxi ^5+12* xxi^6)^3

16 /* Mod(0, w^14 + w^13 - w^11 - 2*w^10 + 4*w^9 - 4*w^8 + 3*w^7 - 7*w^6 +
27*w^5 - 50*w^4 + 49*w^3 - 27*w^2 + 8*w - 1) */



Appendix B

Asymptotics

B.1 Extrapolation methods
Code 11 (Stirling’s approximation with Richardson’s method).

1 nextxR(x,k)=vector(floor(length(x)/2),j,x[2*j]+(x[2*j]-x[j])/(2^k-1));
2 limR(x,k)=local(t);t=x;for(ll=1,k-1,t=nextxR(t,ll));t
3 xx=vector (1000 ,n,n!/n^n*exp(n)/sqrt(n));
4 [limR(xx ,1) [100], limR(xx ,1)[100]- sqrt (2*Pi)]
5 /* = [2.508717995 , 0.002089720526] */
6 [limR(xx ,2) [100], limR(xx ,2)[100]- sqrt (2*Pi)]
7 /* = [2.506627844 , -4.301328534 E-7] */
8 [limR(xx ,3) [100], limR(xx ,3)[100]- sqrt (2*Pi)]
9 /* = [2.506628274 , -8.413407752 E-10] */

Code 12 (Stirling’s approximation with Zagier’s method).

1 vecdiff(x)=vector(length(x) -1,j,x[j+1]-x[j]);
2 vecdiffk(x,k)=local(tv);tv=x;for(j=1,k,tv=vecdiff(tv));tv;
3 lim(x,n,k)=vecdiffk(vector(k+1,j,(j+n)^k*x[j+n-1]),k)[1]/k!;
4 [lim(xx ,100 ,1),lim(xx ,100 ,1)-sqrt (2*Pi)]
5 /* = [2.506606727 , -2.154718332 E-5] */
6 [lim(xx ,100 ,2),lim(xx ,100 ,2)-sqrt (2*Pi)]
7 /* = [2.506628488 , 2.129785028 E-7] */
8 [lim(xx ,100 ,3),lim(xx ,100 ,3)-sqrt (2*Pi)]
9 /* = [2.506628273 , -2.015005875 E-9] */

Code 13 (Stirling’s approximation with the variants).

1 xx=vector (1000 ,n,n^n);
2 {faclim(x,n,k)=local(tl);tl=vector(length(x));

387
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3 for(j=n,n+k+1,tl[j]=x[j+2]*x[j]/x[j+1]^2);lim(tl ,n,k)};
4 faclim(xx*1. ,100 ,1)
5 /* = 0.9999508222 */
6 faclim(xx*1. ,100 ,3)
7 /* = 0.9999999981 */
8 faclim(xx*1. ,100 ,10) -1
9 /* = 2.259629648 E-24 */

10 xx=vector (1000 ,n,n^n/n!);
11 {explim(x,n,k)=local(tl);tl=vector(length(x));
12 for(j=n,n+k+1,tl[j]=x[j+1]/x[j]);lim(tl,n,k)};
13 log(explim(xx*1. ,100 ,1))
14 /* = 1.000004085 */
15 log(explim(xx*1. ,100 ,3))
16 /* = 1.000000000 */
17 log(explim(xx*1. ,100 ,10))-1
18 /* = -1.230061846 E-25 */
19 xx=vector (1000 ,n,n^n/n!/exp(n));
20 {pollim(x,n,k)=local(tfo);tfo=vector(length(x));
21 for(j=n,n+k+1,tfo[j]=(x[j+1]/x[j]-1)*j);lim(tfo ,n,k)};
22 pollim(xx ,100 ,1)
23 /* = -0.5000020380 */
24 pollim(xx ,100 ,3)
25 /* = -0.5000000000 */
26 pollim(xx ,100 ,10) +1/2
27 /* = 1.773889943 E-26 */

Code 14 (asymp function).

1 xx=vector (1000 ,n,n^n/n!);
2 {asymp(x,n,k)=local(t1,t2 ,t3 ,t4 ,t5);t1=explim(x,n,k);t2=vector(length(x));
3 for(j=n,n+k+1,t2[j]=x[j]/t1^j);t3=pollim(t2 ,n,k);t4=vector(length(x));
4 for(j=n,n+k,t4[j]=x[j]/t1^j/j^t3);t5=lim(t4 ,n,k);[t1,t3,t5]}
5 asymp(xx*1. ,100 ,10)
6 /* = [2.718281828 , -0.5000000000 , 0.3989422804] */
7 asymp(xx*1. ,100 ,10) -[exp(1) ,-1/2,1/sqrt (2*Pi)]
8 /* = [ -3.343654765 E-25, 1.432584409 E-22, -3.772064459 E-22] */

Code 15 (Asymptotics of Airy function with Oscillating method).

1 xx=vector (250,n,airy(-n^(2/3))[1]);
2 {oscser(x,n,k,z)=local(t);t=vector(floor(length(x)/2));
3 for(j=n,n+k+1,t[j]=sum(l=0,j,binomial(j,l)*x[j+l]*z^(j-l)));t}
4 {asymposc(x,n,k,z)=t1=oscser(x,n,k,z);t2=asymp(t1 ,n,k);
5 [(-z+sqrt(z^2+4*t2[1]))/2,t2[2],
6 t2[3]/(1+(( -z+sqrt(z^2+4* t2[1]))/2)/((-z+sqrt(z^2+4* t2[1]))/2+z))^t2[2];
7 (-z-sqrt(z^2+4* t2[1]))/2,t2[2],
8 t2[3]/(1+(( -z-sqrt(z^2+4* t2[1]))/2)/((-z-sqrt(z^2+4* t2[1]))/2+z))^t2[2]]}
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9 for(k=0,9,print ([k,asymposc(xx ,100,5,E(k/10))[,1]]))
10 /*
11 [0, [1.3264 E5 - 2.6475 E -995*I, -1.3264 E5 + 2.6475 E-995*I]~]
12 [1, [0.90125 + 0.63470*I, -1.7103 - 1.2225*I]~]
13 [2, [0.78589 + 0.61837*I, -1.0949 - 1.5694*I]~]
14 [3, [0.78589 + 0.61837*I, -0.47687 - 1.5694*I]~]
15 [4, [0.78589 + 0.61837*I, 0.023130 - 1.2062*I]~]
16 [5, [0.50000 + 2.5912 E4*I, 0.50000 - 2.5912 E4*I]~]
17 [6, [0.78589 - 0.61837*I, 0.023130 + 1.2062*I]~]
18 [7, [0.78589 - 0.61837*I, -0.47687 + 1.5694*I]~]
19 [8, [0.78589 - 0.61837*I, -1.0949 + 1.5694*I]~]
20 [9, [0.90125 - 0.63470*I, -1.7103 + 1.2225*I]~]
21 */
22 asymposc(xx ,100,5,E(3/10))[1,]
23 /* =[0.78589 + 0.61837*I, -0.16667 - 2.4163 E-10*I, 0.19947 - 0.19947*I]*/
24 log(asymposc(xx ,100,5,E(3/10))[1 ,1]) -2*I/3
25 /* = -1.7639 E-13 + 2.1943 E-13*I */
26 asymposc(xx ,100,5,E(3/10))[1 ,2]+1/6
27 /* = 1.1732 E-10 - 2.4163 E-10*I */
28 asymposc(xx ,100,5,E(3/10))[1,3]-E(-1/8) /2/ sqrt(Pi)
29 /* = 1.7362 E-10 + 4.4925 E-10*I */
30 asymposc(xx ,100,5,E(7/10))[1,]
31 /* =[0.78589 - 0.61837*I, -0.16667 + 2.4163 E-10*I, 0.19947 + 0.19947*I]*/
32 log(asymposc(xx ,100,5,E(7/10))[1 ,1])+2*I/3
33 /* = -1.7639 E-13 - 2.1943 E-13*I */
34 asymposc(xx ,100,5,E(7/10))[1 ,2]+1/6
35 /* = 1.1732 E-10 + 2.4163 E-10*I */
36 asymposc(xx ,100,5,E(7/10))[1,3]-E(1/8) /2/ sqrt(Pi)
37 /* = 1.7362 E-10 - 4.4925 E-10*I */
38 xx=vector (250,n,airy(-n^(2/3))[1]-exp ((2/3*n-Pi/4)*I)/2/ sqrt(Pi)/n^(1/6)
39 -exp ( -(2/3*n-Pi/4)*I)/2/ sqrt(Pi)/n^(1/6));
40 asymposc(xx ,100,10,E(3/10))[1 ,3]/( exp(-Pi/4*I)/2/ sqrt(Pi))+5/48*I
41 /* = -4.5841 E-16 - 1.9299 E-16*I */
42 asymposc(xx ,100,10,E(7/10))[1 ,3]/( exp(Pi/4*I)/2/ sqrt(Pi)) -5/48*I
43 /* = -4.5841 E-16 + 1.9299 E-16*I */

B.2 Optimal truncation and Pochhammer asymptotics

Code 16 (Error of optimal truncation).

1 for(j=1,30,print ([j,(exp (100)*eint1 (100)-sum(k=0,10*j,(-1)^k*k!/100^(k+1))
)]))

2 /*
3 [1, -3.5674 E-17]
4 [2, -4.1939 E-25]
5 [3, -6.2408 E-31]
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6 [4, -2.3607 E-35]
7 [5, -1.0228 E-38]
8 [6, -3.1406 E-41]
9 [7, -4.9566 E-43]

10 [8, -3.1931 E-44]
11 [9, -7.0592 E-45]
12 [10, -4.6779 E-45]
13 [11, -8.3365 E-45]
14 [12, -3.6551 E-44]
15 [13, -3.6605 E-43]
16 [14, -7.8626 E-42]
17 [15, -3.4317 E-40]
18 [16, -2.9040 E-38]
19 [17, -4.5732 E-36]
20 [18, -1.2924 E-33]
21 [19, -6.3462 E-31]
22 [20, -5.2606 E-28]
23 [21, -7.1722 E-25]
24 [22, -1.5709 E-21]
25 [23, -5.4097 E-18]
26 [24, -2.8725 E-14]
27 [25, -2.3099 E-10]
28 [26, -2.7671 E-6]
29 [27, -0.048629]
30 [28, -1236.2]
31 [29, -4.4861 E7]
32 [30, -2.2959 E12]
33 */
34 sqrt (2*Pi*100)*exp (-100)
35 /* 9.3248 E-43 */
36

37 for(j=1,20,print ([j,(exp (1000)*eint1 (1000) -sum(k=0 ,100*j,(-1)^k*k!/1000^(k
+1)))]))

38 /*
39 [1, -8.5542 E -147]
40 [2, -1.3190 E -229]
41 [3, -7.0768 E -290]
42 [4, -1.8319 E -335]
43 [5, -4.0707 E -370]
44 [6, -4.7490 E -396]
45 [7, -9.9780 E -415]
46 [8, -3.4282 E -427]
47 [9, -3.1996 E -434]
48 [10, -2.0124 E -436]
49 [11, -2.7997 E -434]
50 [12, -3.4647 E -428]
51 [13, -1.7861 E -418]
52 [14, -2.0190 E -405]
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53 [15, -2.8875 E -389]
54 [16, -3.2446 E -370]
55 [17, -1.8880 E -348]
56 [18, -3.9385 E -324]
57 [19, -2.1242 E -297]
58 [20, -2.2110 E -268]
59 */
60 sqrt (2*Pi *1000)*exp ( -1000)
61 /* = 4.0235 E-433 */

Code 17 (Error of optimal truncation with exponentially small terms).

1 for(j=1,20,print ([j,(exp (1000)*eint1 (1000)+exp ( -7*1000/8) -sum(k=0 ,100*j
,(-1)^k*k!/1000^(k+1)))]))

2 /*
3 [1, -8.5542 E -147]
4 [2, -1.3190 E -229]
5 [3, -7.0768 E -290]
6 [4, -1.8319 E -335]
7 [5, -4.0707 E -370]
8 [6, 9.8249 E -381]
9 [7, 9.8249 E -381]

10 [8, 9.8249 E -381]
11 [9, 9.8249 E -381]
12 [10, 9.8249 E -381]
13 [11, 9.8249 E -381]
14 [12, 9.8249 E -381]
15 [13, 9.8249 E -381]
16 [14, 9.8249 E -381]
17 [15, 9.8249 E -381]
18 [16, -3.2446 E -370]
19 [17, -1.8880 E -348]
20 [18, -3.9385 E -324]
21 [19, -2.1242 E -297]
22 [20, -2.2110 E -268]
23 */
24 exp ( -7*1000/8)
25 /* = 9.8249 E-381 */

Code 18 (Smooth optimal truncation).

1 EGZ(X,b)=intnum(t=0,[oo ,abs(X)],t^(abs(X)-b)*exp(-t*abs(X))/(t-X/abs(X)))
2

3 {fsmop(h)=
4 local(co ,ot,sot);
5 N=floor(abs(-1/h));
6 b=abs(-1/h)-N;
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7 ot=sum(k=1,N,(-1)^(k-1)*(k-1)!*h^k);
8 sot =(( -1/h)/abs(-1/h))^(-N)*EGZ(-1/h,b);
9 [ot ,sot ,ot+sot]}

10

11 exp (1000.1)*eint1 (1000.1)
12 /* = 0.00099890 */
13

14 fsmop (1/1000.1)
15 /* = [0.00099890 , 1.8199 E-436, 0.00099890] */
16

17 exp (1000.1)*eint1 (1000.1) -fsmop (1/1000.1) [3]
18 /* = 6.1620 E-656 */

Code 19 (Asymptotics of the Pochhammer symbol generically).

1 {qpochinfty(x,q,N)=local(s,t,qk);qk=1;t=1;s=1;for(k=1,N,qk=qk*q;t=-t*qk/q*
x/(1-qk);s=s+t);s};

2 {qpochinftyasy(m,x,tau ,N)=sum(k=0,N,subst(bernpol(k,yyy),yyy ,m)*(2*Pi*I*
tau)^(k-1)/k!* polylog(2-k,x))};

3 E(x)=exp (2*Pi*I*x);
4 qpochinfty(E(Pi)/2*E(I/100/Pi),E(I/100) ,500)
5 /* = 0.0053120 - 0.0085775*I */
6 qpochinfty(E(Pi)/2*E(I/100/Pi),E(I/100) ,500)/exp(qpochinftyasy (1/Pi,E(Pi)

/2,I/100 ,0))
7 /* = 0.95359 - 0.088647*I */
8 qpochinfty(E(Pi)/2*E(I/100/Pi),E(I/100) ,500)/exp(qpochinftyasy (1/Pi,E(Pi)

/2,I/100 ,10))-1
9 /* = -2.8664 E-16 + 1.1344 E-16*I */

Code 20 (Asymptotics of the Pochhammer symbol generically with gamma).

1 \p1000
2 default(format ,"g.5")
3 {qpochinfty(x,q,N)=local(s,t,qk);qk=1;t=1;s=1;for(k=1,N,qk=qk*q;t=-t*qk/q*

x/(1-qk);s=s+t);s};
4 {qpochinftyasygam(a,b,c,d,m,x,tau ,N)=sum(k=0,N,(-2*Pi*I*abs(c))^(k-1)/(c

^2* tau+c*d)^(k-1)/k!*sum(ell=0,abs(c) -1,subst(bernpol(k,yyy),yyy ,(m+ell
)/abs(c))*polylog(2-k,E((m+ell)*a/c)*x)))};

5 E(x)=exp (2*Pi*I*x);
6 qpochinfty(E(E(0.2 -0.11*I)*I*100/(7*I*100+1))*E( -0.55 -0.2*I),E(I*100/(7*I

*100+1)) ,1000)
7 /* = 0.26598 + 1.0302*I */
8 qpochinfty(E(E(0.2 -0.11*I)*I*100/(7*I*100+1))*E( -0.55 -0.2*I),E(I*100/(7*I

*100+1)) ,1000)/exp(qpochinftyasygam (1,0,7,1,E(0.2 -0.11*I),E( -0.55 -0.2*I
),I*100 ,0))

9 /* = 0.92035 + 0.66454*I */
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10 qpochinfty(E(E(0.2 -0.11*I)*I*100/(7*I*100+1))*E( -0.55 -0.2*I),E(I*100/(7*I
*100+1)) ,1000)/exp(qpochinftyasygam (1,0,7,1,E(0.2 -0.11*I),E( -0.55 -0.2*I
),I*100 ,10))-1

11 /* = 1.2176 E-20 + 2.6608 E-21*I */
12 qpochinfty(E(E(0.2 -0.11*I)*I*100/( -7*I*100+1))*E( -0.55 -0.2*I),E(I*100/( -7*

I*100+1)) ,10000)/exp(qpochinftyasygam (1,0,-7,1,E(0.2 -0.11*I),E
( -0.55 -0.2*I),I*100 ,10))-1

13 /* = 2.0601 E-30 - 9.8181 E-30*I */

Code 21 (Integral formula for Pochhammer symbol).

1 \p 800
2 default(format ,"g.5")
3 default(parisize ,"1G")
4 E(x)=exp (2*Pi*I*x);
5 qpoch(m,z,tau ,M)=prod(n=0,M,1-E((n+m)*tau+z));
6 qpochint(m,z,tau ,M)=prod(k=ceil(real(m*tau+z)),floor(real((M+m)*tau+z)),1-

E(m+z/tau -k/tau))*exp(dilog(E(m*tau+z))/(2*Pi*I*tau)-dilog(E((M+m)*tau+
z))/(2*Pi*I*tau)+1/2* log(1-E(m*tau+z))+1/2* log(1-E((M+m)*tau+z))-I/tau*
intnum(y=0,[+oo , 1],(log(1-E(m*tau -I*y+z))-log(1-E(m*tau+I*y+z))-log(1-
E((M+m)*tau -I*y+z))+log(1-E((M+m)*tau+I*y+z)))/(E(-I*y/tau) -1)));

7 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /1000 ,1500)
8 /* = -3.2286 E25 + 1.0241 E26*I */
9 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /1000 ,1500) -qpochint(E(1/10+I/100),

E(0.123)/Pi ,E(0.01) /1000 ,1500)
10 /* = 1.8503 E-240 + 8.6047 E -241*I */
11 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /100 ,1500)
12 /* = 38.503 - 20.177*I */
13 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /100 ,1500)-qpochint(E(1/10+I/100),E

(0.123)/Pi,E(0.01) /100 ,1500)
14 /* = -3.5620 E-373 + 1.8839 E -373*I */
15 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /10 ,1500)
16 /* = 1.3224 - 0.0049443*I */
17 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /10 ,1500)-qpochint(E(1/10+I/100),E

(0.123)/Pi,E(0.01) /10 ,1500)
18 /* = 2.9953 E-266 + 7.7079 E -266*I */
19 \p 1000
20 default(format ,"g.5")
21 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /1000 ,1500) -qpochint(E(1/10+I/100),

E(0.123)/Pi ,E(0.01) /1000 ,1500)
22 /* = 4.9332 E-303 - 2.0625 E -303*I */
23 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /100 ,1500)-qpochint(E(1/10+I/100),E

(0.123)/Pi,E(0.01) /100 ,1500)
24 /* = 1.1505 E-461 + 4.9936 E -462*I */
25 qpoch(E(1/10+I/100) ,E(0.123)/Pi ,E(0.01) /10 ,1500)-qpochint(E(1/10+I/100),E

(0.123)/Pi,E(0.01) /10 ,1500)
26 /* = -5.2424 E-266 - 2.3307 E -266*I */
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Code 22 (Asymptotics for fixed x = 1).

1 \p 800
2 default(format ,"g.5")
3 default(parisize ,"1G")
4 E(x)=exp (2*Pi*I*x);
5 {qpochinfty(m,tau ,N)=local(q,x,s,t,qk);x=E(m*tau);q=E(tau);qk=1;t=1;s=1;

for(k=1,N,qk=qk*q;t=-t*qk/q*x/(1-qk);s=s+t);s};
6 qpochasymp(m,tau ,N)=2*Pi*(-I*tau)^(1/2) /(-2*Pi*I*m*tau)^(m)*m^m/gamma(m)*

exp(-(2*Pi*I)/(24* tau)+sum(k=2,N,zeta(2-k)*(2*Pi*I*tau)^(k-1)*subst(
bernpol(k,xxx),xxx ,m)/k!))

7 qpochinfty(E(1/10+I/100),E(0.01) /1000 ,10000)/qpochasymp(E(1/10+I/100),E
(0.01) /1000 ,10) -1

8 /* = -3.2289 E-32 - 2.1203 E-32*I */
9 qpochinfty(E(1/10+I/100),E(0.01) /1000 ,10000)/qpochasymp(E(1/10+I/100),E

(0.01) /1000 ,20) -1
10 /* = 4.9559 E-59 + 1.2580 E-58*I */

Code 23 (Asymptotics for fixed x with γ).

1 \p1000
2 default(format ,"g.5")
3 {qpochinfty(x,q,N)=local(s,t,qk);qk=1;t=1;s=1;for(k=1,N,qk=qk*q;t=-t*qk/q*

x/(1-qk);s=s+t);s};
4 {qpochinftyasygam(a,b,c,d,m,j,tau ,N)=sum(k=0,N,(-2*Pi*I*abs(c))^(k-1)/(c

^2* tau+c*d)^(k-1)/k!*sum(ell=0,abs(c) -1,if(Mod(j,abs(c))==Mod(ell ,abs(c
)),0,subst(bernpol(k,yyy),yyy ,(m+ell)/abs(c))*polylog(2-k,E((ell -j)*a/c
)))))+log (2*Pi*(-I*(-abs(c)/(c^2* tau+c*d)))^(1/2) /(2*Pi*I*((m+j))*(1/(c
^2* tau+c*d)))^((m+j)/abs(c))*((m+j)/abs(c))^((m+j)/abs(c))/gamma (((m+j)
/abs(c)))) -(2*Pi*I)/(24*( - abs(c)/(c^2* tau+c*d)))+sum(k=2,N,zeta(2-k)
*(-2*Pi*I*abs(c)/(c^2* tau+c*d))^(k-1)*subst(bernpol(k,xxx),xxx ,((m+j)/
abs(c)))/k!)};

5 E(x)=exp (2*Pi*I*x);
6 qpochinfty(E(E(0.2 -0.11*I)*I*100/(7*I*100+1))/E(1/7*(2+E(0.2 -0.11*I))),E(I

*100/(7*I*100+1)) ,1000)
7 /* = -1.0733 E-12 + 1.7927 E-12*I */
8 qpochinfty(E(E(0.2 -0.11*I)*I*100/(7*I*100+1))/E(1/7*(2+E(0.2 -0.11*I))),E(I

*100/(7*I*100+1)) ,1000)/exp(qpochinftyasygam (1,0,7,1,E(0.2 -0.11*I) ,2,I
*100 ,10)) -1

9 /* = -3.0248 E-23 + 2.8187 E-23*I */
10 qpochinfty(E(E(0.2 -0.11*I)*(3*I*100+2) /(7*I*100+5))/E(3/7*(2+E(0.2 -0.11*I)

)),E((3*I*100+2) /(7*I*100+5)) ,1000)
11 /* = 1.5909 E-12 + 2.0595 E-12*I */
12 qpochinfty(E(E(0.2 -0.11*I)*(3*I*100+2) /(7*I*100+5))/E(3/7*(2+E(0.2 -0.11*I)

)),E((3*I*100+2) /(7*I*100+5)) ,1000)/exp(qpochinftyasygam (3,2,7,5,E
(0.2 -0.11*I) ,2,I*100 ,10))-1

13 /* = 1.0771 E-23 - 1.0059 E-23*I */
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14 qpochinfty(E(E(0.2 -0.11*I)*(5*I*100+1) /(4*I*100+1))/E(5/4*(2+E(0.2 -0.11*I)
)),E((5*I*100+1) /(4*I*100+1)) ,1000)/exp(qpochinftyasygam (5,1,4,1,E
(0.2 -0.11*I) ,2,I*100 ,10))-1

15 /* = 4.1752 E-24 - 3.7505 E-24*I */





Appendix C

q–difference equations and modularity

C.1 The Habiro ring, η and mock modularity
Code 24 (The Habiro ring).

1 F(q,N)=local(qk,t,s);qk=1;t=1;s=t;for(k=1,N,qk=q*qk;t=t*(1-qk);s=s+t);s
2 F(1+X+O(X^10) ,11)
3 /* = 1 - X + 2*X^2 - 5*X^3 + 15*X^4 - 53*X^5 + 217*X^6 - 1014*X^7 + 5335*X

^8 - 31240*X^9 + O(X^10) */
4 for(k=2,10,print ([k,F(Mod(x,polcyclo(k,x)),k+1)]))
5 /*
6 [2, Mod(3, x + 1)]
7 [3, Mod(-x + 5, x^2 + x + 1)]
8 [4, Mod(-3*x + 8, x^2 + 1)]
9 [5, Mod(-3*x^2 - 5*x + 9, x^4 + x^3 + x^2 + x + 1)]

10 [6, Mod(-13*x + 17, x^2 - x + 1)]
11 [7, Mod(3*x^5 - 7*x^2 - 9*x + 14, x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)]
12 [8, Mod(-3*x^3 - 9*x^2 - 16*x + 15, x^4 + 1)]
13 [9, Mod(7*x^5 - 5*x^4 - x^3 - 11*x^2 - 18*x + 17, x^6 + x^3 + 1)]
14 [10, Mod(-23*x^2 - 15*x + 11, x^4 - x^3 + x^2 - x + 1)]
15 */
16 local(t);forprime(p=2,50,t=lift(F(Mod(x,polcyclo(p,x)),p+1));print([p,

centerlift(Mod(sum(ell=0,p-2,binomial(ell ,4)*polcoeff(t,ell)),p))]))
17 /*
18 [2, 0]
19 [3, 0]
20 [5, 0]
21 [7, 1]
22 [11, 4]
23 [13, 2]
24 [17, -2]
25 [19, -4]
26 [23, -8]
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27 [29, -14]
28 [31, 15]
29 [37, 15]
30 [41, 15]
31 [43, 15]
32 [47, 15]
33 */
34 local(s,t,v);s=0;v=vector (3);forprime(p=prime (3),prime (5),s=s+1;t=lift(F(

Mod(x,polcyclo(p,x)),p+1));v[s]=Mod(sum(ell=0,p-2,binomial(ell ,4)*
polcoeff(t,ell)),p));centerlift(chinese(v))

35 /* = 15 */
36 local(s,t,v);s=0;v=vector (3);forprime(p=prime (4),prime (6),s=s+1;t=lift(F(

Mod(x,polcyclo(p,x)),p+1));v[s]=Mod(sum(ell=0,p-2,binomial(ell ,4)*
polcoeff(t,ell)),p));centerlift(chinese(v))

37 /* = 15 */

Code 25 (Multiplier system for the Dedekind η–function).

1 edeta(a,b,c,d)=eta((a*(I*1000 -1000)+b)/(c*(I*1000 -1000)+d) ,1)/eta((I
*1000 -1000) ,1)/sqrt(c*(I*1000 -1000)+d)

2 Dq(a,b,c,d)=sqrt(-I*c/abs(c))*prod(ell=1,abs(c) -1,(1-E(ell*a/c))^(1/2- ell/
abs(c)))*E((a+d)/24/c)

3 forvec(X=[[-10,10] ,[ -10 ,10],[-10,10] ,[-10 ,10]],if(X[2]==X[3],if(X[3]==X
[4],if(X[4]== -10, print([X[1], gettime ()]))));if(X[1]*X[4]-X[2]*X[3]==1 ,
if(X[3],if(round(edeta(X[1],X[2],X[3],X[4])/Dq(X[1],X[2],X[3],X[4])
*10^150) /10^150==1 , , print ([X[1],X[2];X[3],X[4]])))))

4 forvec(X=[[-10,10] ,[ -10 ,10],[-10,10] ,[-10 ,10]],if(X[1]*X[4]-X[2]*X[3]==1 ,
if(X[3],print([ edeta(X[1],X[2],X[3],X[4])/Dq(X[1],X[2],X[3],X[4]) ,[X
[1],X[2];X[3],X[4]]]))))

5 edeta(-9, -8,-10, -9)/Dq(-9, 8,-10, -9)
6 edeta(7, 5,-10, -7)/Dq(7, 5,-10, -7)
7 forvec(X=[[-10,10] ,[ -10 ,10],[-10,10] ,[-10 ,10]],if(X[1]*X[4]-X[2]*X[3]==1 ,

if(X[3]>0,if(X[1], print ([Dq(-X[3],-X[4],X[1],X[2])/Dq(X[1],X[2],X[3],X
[4]),X[1]/X[3], matdet ([X[1],X[2];X[3],X[4]])])))))

Code 26 (Asymptotics of order three mock θ–function).

1 f(q,N,m=0)=local(t,s,qk);qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=qk^2*t/q/(1+qk);
s=s+t*qk^m);s

2 huh=vector (2000);
3 for(k=1000 ,1010 , huh[k]=f(E((I*k)/(2*(I*k)+1)),k))
4 asymp(huh ,1000 ,8)
5 \\ = [1.1104 - 4.2614 E-28*I, 0.50000 + 3.4708 E-24*I, -0.74248 +

0.038912*I]
6 huh0=vector (2000);
7 for(k=1000 ,1010 , huh0[k]=( huh[k]+(E( -1/60*(I*k+1/2))*sqrt(I*k+1/2) *(-15/8-

sqrt (5) *5/8) ^( -1/4)*E( -1/(2*(2*I*k+1))/60)) -2+4*(2*Pi*I/(2*(2*I*k+1)))
-36*(2*Pi*I/(2*(2*I*k+1)))^2+1640/3*(2* Pi*I/(2*(2*I*k+1)))^3) /(2*Pi*I
/(2*(2*I*k+1)))^4)
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8 asymp(huh0 ,1000 ,8)
9 f(q+O(q^10) ,20,0)+f(q+O(q^10) ,20,1)-q^(0+1)*f(q+O(q^10) ,20,2)

10 fphi(x,m,N)=sum(k=0,N,sum(ell=0,k,eval(Str("a",k,ell))*m^ell*x^k))
11 fphi(x,m,5)+fphi(x,m+1,5)-exp((m+1)*x+O(x^5))*fphi(x,m+2,5)

Code 27 (Modularity of the η–constants).

1 \p200
2 default(format ,"g.5")
3 E(x)=exp (2*Pi*I*x);
4 Dq(x)=local(a,c);c=denominator(x);a=x*c;sqrt(-I*c/abs(c))*prod(ell=1,abs(c

) -1,(1-E(ell*a/c))^(1/2 -ell/abs(c)));
5 for(k=90,110, print([k,Dq(-1/(k+1/2))/Dq((k+1/2))/Dq(1)/E(1/24/ denominator(

k+1/2)/numerator(k+1/2) +1/24/(k+1/2) +(k+1/2) /24) -1]))
6 for(k=90,110, print([k,Dq(-1/(k+11/29))/Dq((k+11/29))/Dq(1)/E(1/24/

denominator(k+11/29)/numerator(k+11/29) +1/24/(k+11/29) +(k+11/29) /24)
-1]))

7 for(k=90,110, print([k,Dq(-1/(k -11/29))/Dq((k -11/29))/Dq(1)/E(1/24/
denominator(k -11/29)/numerator(k -11/29) +1/24/(k -11/29) +(k -11/29) /24)
-1]))

C.2 The Faddeev quantum dilogarithm

Code 28 (Integral formula for Faddeev’s quantum dilogarithm).

1 \p1000
2 default(format ,"g.5")
3 default(parisize ,"1G")
4 E(x)=exp (2*Pi*I*x)
5 qpoch(a,q,n)=if(n>-1,prod(j=0,n-1,1-a*q^j) ,1/prod(j=n,-1,1-a*q^(j)));
6 F(x,q,N)=local(t,s,qk);qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=-qk*x/q*t/(1-qk);s

=s+t);s
7 E(x)=exp (2*Pi*I*x)
8 QD(z,tau ,N)=if(imag(tau) >0,F(E((z-1)/tau),E(-1/tau),N)/F(E(z),E(tau),N),F(

E(z-tau),E(-tau),N)/F(E(z/tau),E(1/ tau),N))
9 f(z,tau)=local(t);t=(log(1-E(z/tau -I*(x+O(x^10))))-log(1-E(z/tau+I*(x+O(x

^10)))))/(exp(2*Pi*tau*(x+O(x^10))) -1);exp(-dilog(E(z/tau))*tau /(2*Pi*I
)+I*tau*intnum(xi=0, [+oo , 1],if(xi <1/10^1000 , sum(i=0,7, polcoeff(t,i,x)
*xi^i),(log(1-E(z/tau -I*xi))-log(1-E(z/tau+I*xi)))/(exp (2*Pi*tau*xi) -1)
)))/sqrt(1-E(z/tau))/qpoch(E(z),E(tau),-floor(real(z/tau)))

10 ze=E(Pi)*sqrt (2)
11 taue=-E(exp(1))*exp (1) /11
12 QD(ze,taue ,1000)/f(ze ,taue) -1
13 \\ = -1.1484 E-32 - 9.5559 E-33*I
14 ze=100+E(Pi)*sqrt (2)
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15 taue=-E(exp(1))*exp (1) /11
16 QD(ze,taue ,1000)/f(ze ,taue) -1
17 \\ = -3.4468 E-55 - 9.4898 E-56*I
18 ze=E(Pi)*sqrt (2)
19 taue=-E(-exp(1))*exp (1) /11
20 QD(ze,taue ,1000)/f(ze ,taue) -1
21 \\ = 2.3917 E-96 - 3.2546 E-96*I
22 \p2000
23 default(format ,"g.5")
24 ze=E(Pi)*sqrt (2)
25 taue=-E(exp(1))*exp (1) /11
26 QD(ze,taue ,1000)/f(ze ,taue) -1
27 \\ = 1.1851 E-62 - 1.3386 E-61*I
28 ze=100+E(Pi)*sqrt (2)
29 taue=-E(exp(1))*exp (1) /11
30 QD(ze,taue ,1000)/f(ze ,taue) -1
31 \\ = -1.0435 E-56 - 3.6018 E-56*I
32 ze=E(Pi)*sqrt (2)
33 taue=-E(-exp(1))*exp (1) /11
34 QD(ze,taue ,1000)/f(ze ,taue) -1
35 \\ = -9.1869 E-190 - 1.4815 E -189*I
36 c(b)=I/2*(b+1/b)
37 fK(z,tau ,eps)=if(abs(imag(I*z/sqrt(tau)-c(sqrt(tau))))<abs(imag(c(sqrt(tau

)))),exp(-intnum(w=[-oo ,1],[oo ,1],exp ((2*z-1-tau)*(w+I*eps)/sqrt(tau))
/4/ sinh((w+I*eps)*sqrt(tau))/sinh((w+I*eps)/sqrt(tau))/(w+I*eps))),
print("Outside domain"))

38 ze =0.25+0.4*I
39 taue =3+4*I
40 QD(ze,taue ,1000)/f(ze ,taue) -1
41 QD(ze,taue ,2000)/fK(ze ,taue ,0.4) -1
42 fK(z,tau ,eps)=if(abs(imag(I*z/sqrt(tau)-c(sqrt(tau))))<abs(imag(c(sqrt(tau

)))),exp(-intnum(w=[-oo ,1],[oo ,1],exp(z*(w+I*eps)/sqrt(tau))/(1-exp((w+
I*eps)/sqrt(tau)))/(1-exp((w+I*eps)*sqrt(tau)))/(w+I*eps))),print("
Outside domain"))

43 ze =0.25+0.4*I
44 taue =3+4*I
45 QD(ze,taue ,1000)/f(ze ,taue) -1
46 QD(ze,taue ,2000)/fK(ze ,taue ,0.4) -1

Code 29 (Faddeev’s quantum dilogarithm at rationals).

1 \p1000
2 default(format ,"g.5")
3 default(parisize ,"1G")
4 E(x)=exp (2*Pi*I*x)
5 qpoch(a,q,n)=if(n>-1,prod(j=0,n-1,1-a*q^j) ,1/prod(j=n,-1,1-a*q^(j)));
6 E(x)=exp (2*Pi*I*x)
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7 f(z,tau)=local(t);t=(log(1-E(z/tau -I*(x+O(x^10))))-log(1-E(z/tau+I*(x+O(x
^10)))))/(exp(2*Pi*tau*(x+O(x^10))) -1);exp(-dilog(E(z/tau))*tau /(2*Pi*I
)+I*tau*intnum(xi=0, [+oo , 1],if(xi <1/10^1000 , sum(i=0,7, polcoeff(t,i,x)
*xi^i),(log(1-E(z/tau -I*xi))-log(1-E(z/tau+I*xi)))/(exp (2*Pi*tau*xi) -1)
)))/sqrt(1-E(z/tau))/qpoch(E(z),E(tau),-floor(real(z/tau)))

8 c(b)=I/2*(b+1/b)
9 fK(z,tau ,eps)=if(abs(imag(I*z/sqrt(tau)-c(sqrt(tau))))<abs(imag(c(sqrt(tau

)))),exp(-intnum(w=[-oo ,1],[oo ,1],exp(z*(w+I*eps)/sqrt(tau))/(1-exp((w+
I*eps)/sqrt(tau)))/(1-exp((w+I*eps)*sqrt(tau)))/(w+I*eps))),print("
Outside domain"))

10 ze =0.25+0.4*I
11 taue =13/7
12 f(ze ,taue)
13 fK(ze,taue ,0.4)
14 CD(x,q,N)=prod(k=1,N-1,(1-q^k*x)^(k/N));
15 frat(u,tau)=local(d,n);d=denominator(tau);n=tau*d;exp(dilog(E(d*u))/(2*Pi*

I*n*d))*(1-E(d*u))^(u/n-1)*CD(E(u),E(tau),d)*CD(E(u/tau),E(1/ tau),n)
16 frat(ze,taue)/f(ze ,taue) -1





Appendix D

Worked examples of q–hypergeometric
functions

D.1 Nahm sums
Code 30 (Computing q–expansions of Nahm sums).

1 f(q,A,m,n,N)=local(si,qk ,t,s);si=Mod(x^numerator(n),polcyclo(denominator(n
)));qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=si*qk^A*t/(1-qk);s=s+t*qk^(m-A/2))
;s

2 f(q+O(q^10) ,2,0,0,10)
3 /* = Mod(1 + q + q^2 + q^3 + 2*q^4 + 2*q^5 + 3*q^6 + 3*q^7 + 4*q^8 + 5*q^9

+ O(q^10), x - 1) */

Code 31 (Asymptotics of Nahm sums).

1 prec =2000;
2 default(realprecision ,prec)
3 default(format ,"g.5")
4 E(x)=exp (2*Pi*I*x);
5 f(q,A,m,n,N=ceil(abs(real(sqrt(log (10^(- prec))/log(abs(q))*2/A)))))=local(

si ,qk ,t,s);si=E(n);qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=qk^A*t/(1-qk);s=s+t
*qk^(m-A/2));s

6 huh=vector (2000);
7 for(k=1000 ,1012 , huh[k]=f(E(-1/(E(0.01)*k)) ,2,0))
8 asymp(huh ,1000 ,10)
9 /* [1.0011 - 0.10501*I, 3.6671 E-7 + 8.8228 E-8*I, 0.85065 - 6.5637 E-7*I]

*/
10 huh=vector (2000);
11 for(k=1000 ,1012 , huh[k]=f(E(-1/(E(0.001)*k)) ,4,0))
12 asymp(huh ,1000 ,10)
13 /* [1.0200 + 0.56359*I, -1.4004 E-22 - 1.5676 E-21*I, 0.43783 - 0.17519*I]

*/
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Code 32 (The leading asymptotics of the A = 2 Nahm sum).

1 prec =200;
2 default(realprecision ,prec)
3 default(format ,"g.5")
4 f(q,A,m,n,N=ceil(abs(real(sqrt(log (10^(- prec))/log(abs(q))*2/A)))))=local(

si ,qk ,t,s);si=E(n);qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=qk^A*t/(1-qk);s=s+t
*qk^(m-A/2));s

5 X=polroots(x^2+x-1);
6 xx=log(X)/2/Pi/I;
7 -1/(2*Pi*I)*log(1-X[1]) +2*(xx[1]+k)+j
8 /* = 2*k + j + 1 */
9 -1/(2*Pi*I)*log(1-X[2]) +2*(xx[2]+k)+j

10 /* = 2*k + j */
11 dilog(X[1])-Pi ^2/6+(2* Pi*I)^2*(xx[1]+k)^2 -(2*Pi*I)^2*(2*k+1)*(xx[1]+k)
12 /* = 39.478*k^2 + 39.478*k + 7.2377 */
13 dilog(X[2])-Pi ^2/6+(2* Pi*I)^2*(xx[2]+k)^2 -(2*Pi*I)^2*(2*k)*(xx[2]+k)
14 /* = 39.478*k^2 - 0.65797 */
15 huh=vector (2000);
16 for(k=1000 ,1012 , huh[k]=f(E(-1/(E(0.01)*k)) ,2,0));
17 asymp(huh ,1000 ,10)
18 /* [1.0011 - 0.10501*I, 3.6671 E-7 + 8.8228 E-8*I, 0.85065 - 6.5637 E-7*I]

*/
19 E(1/15* Pi ^2/(2* Pi*I)^2*E(0.01))
20 E( -1/60*E(0.01))
21 /* = 1.0011 - 0.10501*I */
22 1/sqrt(1-X[2])/sqrt(X[2]/(1 -X[2]) +2)
23 /* = 0.85065 */
24 huh1=vector (2000);
25 for(k=1000 ,1012 , huh1[k]=( huh[k]/E(1/15* Pi ^2/(2* Pi*I)^2*E(0.01)*k)*sqrt(1-X

[2])*sqrt(X[2]/(1 -X[2]) +2) -1)/(2*Pi*I/(E(0.01)*k)));
26 lim(huh1 ,1000 ,4)
27 /* = -0.016667 + 8.4215 E-19*I */
28 huh2=vector (2000);
29 for(k=1000 ,1012 , huh2[k]=( huh1[k]+1/60) /(2*Pi*I/(E(0.01)*k)));
30 lim(huh2 ,1000 ,4)
31 /* = 0.00013889 - 2.5014 E-20*I */
32 huh0=vector (2000);
33 for(k=1000 ,1012 , huh0[k]=huh[k]/E(1/15* Pi ^2/(2* Pi*I)^2*E(0.01)*k)*sqrt(1-X

[2])*sqrt(X[2]/(1 -X[2]) +2)-E(-1/(E(0.01)*k)/60));
34 asymp(huh0 ,1000 ,3)
35 /* = [0.28775 + 0.87819*I, 4.4440 E-12 + 4.1924 E-10*I, 0.61803 - 2.0063 E

-9*I] */
36 heh=vector (2000);
37 for(k=1000 ,1012 , heh[k]=f(E(-1/(E(0.01)*k)) ,2,1));
38 asymp(huh ,1000 ,10)
39 /* = [1.0011 - 0.10501*I, 3.6671 E-7 + 8.8228 E-8*I, 0.85065 - 6.5637 E-7*

I] */
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40 heh0=vector (2000);
41 for(k=1000 ,1012 , heh0[k]=heh[k]/E(1/15* Pi ^2/(2* Pi*I)^2*E(0.01)*k)/X[2]* sqrt

(1-X[2])*sqrt(X[2]/(1 -X[2]) +2)-E(11/(E(0.01)*k)/60));
42 asymp(heh0 ,1000 ,3)
43 /* = [0.28775 + 0.87819*I, -2.9211 E-9 - 4.2488 E-9*I, -1.6180 - 5.3234 E

-8*I] */
44 const(al ,m,k,rho=2)=local(c);c=denominator(al);sum(r=0,c-1,E((r^2+r*(2*k+m

))*al+(2*r+m)*xx[rho]/c)*prod(s=0,c-1,(1-E((r+s+1+k)*al+xx[rho]/c))
^(1/2 -(r+s+1)/c)))/sqrt(X[rho]/(1-X[rho])*c+2*c)/prod(ell=1,abs(c)
-1,(1-E(ell*al))^(1/2- ell/abs(c)))

45 {for(m=-3,3,for(c=-10,10,if(c,
46 huh=vector (2000);
47 for(k=1000 ,1006 , huh[k]=f(E(E(0.01)*k/(c*E(0.01)*k+1)) ,2,m));
48 print([m,c,asymp(huh ,1000 ,3) [3]/E(1/15* Pi ^2/(2* Pi*I)^2/c)/const (1/c,m,0,2)

-1]))))}
49 {for(c=-10,10,if(c,
50 huh=vector (2000);
51 for(k=1000 ,1006 , huh[k]=f(E(E(0.01)*k/(c*E(0.01)*k+1)) ,2,0));
52 huh0=vector (2000);
53 for(k=1000 ,1006 , huh0[k]=( huh[k]/E(1/15* Pi ^2/(2* Pi*I)^2*(E(0.01)*k+1/c))/

const (1/c,0,0,2)/E( -1/60/(c^2*E(0.01)*k+c)) -1));
54 print([c,asymp(huh0 ,1000 ,3) [1]])))}
55 hah=vector (200);
56 for(k=50,110,hah[k]= const (1/k,0,0,2);print([k,gettime ()]))
57 for(k=0,10,print ([k,asymposc(hah ,50,3,E(k/10))]))
58 /*
59 [0, [0.88660 + 3.3481*I, -171.92 - 17.768*I, -3.9059 E303 - 1.4620 E303*I;

-1.8866 - 3.3481*I, -171.92 - 17.768*I, 1.7423 E313 - 1.3758 E313*I]]
60 [1, [0.99452 + 0.10454*I, 0.00088587 - 0.0021848*I, 0.72060 + 0.0077394*I;

-1.8035 - 0.69232*I, 0.00088587 - 0.0021848*I, 0.71976 + 0.0085990*I]]
61 [2, [0.99452 + 0.10453*I, 1.9822 E-6 - 6.6354 E-6*I, 0.72360 + 2.5350 E-5*

I; -1.3035 - 1.0556*I, 1.9822 E-6 - 6.6354 E-6*I, 0.72360 + 2.7007 E-5*
I]]

62 [3, [0.99452 + 0.10453*I, 6.0323 E-6 - 6.3794 E-6*I, 0.72359 + 2.6025 E-5*
I; -0.68550 - 1.0556*I, 6.0323 E-6 - 6.3794 E-6*I, 0.72358 + 2.3202 E
-5*I]]

63 [4, [0.99426 + 0.10417*I, 0.13857 + 0.020381*I, 0.34916 - 0.0026746*I;
-0.18525 - 0.69195*I, 0.13857 + 0.020381*I, 0.36950 - 0.062598*I]]

64 [5, [0.59326 + 0.91355*I, -8.9737 E-6 - 4.8220 E-6*I, 0.27641 + 5.8938 E
-6*I; 0.40674 - 0.91355*I, -8.9737 E-6 - 4.8220 E-6*I, 0.27641 + 8.2474
E-6*I]]

65 [6, [0.40674 - 0.91355*I, -3.2052 E-6 - 6.7678 E-6*I, 0.27640 + 1.0010 E
-5*I; 0.40228 + 1.5013*I, -3.2052 E-6 - 6.7678 E-6*I, 0.27640 + 1.0232
E-5*I]]

66 [7, [0.40674 - 0.91355*I, 1.1832 E-5 + 4.7732 E-5*I, 0.27638 - 6.4272 E-5*
I; -0.097719 + 1.8646*I, 1.1832 E-5 + 4.7732 E-5*I, 0.27637 - 7.1309 E
-5*I]]

67 [8, [ -0.022667 + 1.8571*I, -74.548 + 156.88*I, -1.8995 E184 - 1.9925 E184*
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I; -0.28635 - 0.90601*I, -74.548 + 156.88*I, -9.7656 E140 - 5.7530 E140
*I]]

68 [9, [331.16 + 356.32*I, -157.35 - 0.38597*I, -1.7471 E64 + 7.9208 E62*I;
-331.97 - 355.73*I, -157.35 - 0.38597*I, -1.6995 E64 + 6.5188 E63*I]]

69 [10, [0.88660 + 3.3481*I, -171.92 - 17.768*I, -3.9059 E303 - 1.4620 E303*I
; -1.8866 - 3.3481*I, -171.92 - 17.768*I, 1.7423 E313 - 1.3758 E313*I]]

70 */
71 [E(1/60) ,E( -11/60)]
72 /* = [0.99452 + 0.10453*I, 0.40674 - 0.91355*I] */
73 asympv(hah ,[E(1/60) ,E( -11/60) ],[0,0],100,3)
74 /* = [0.72361 - 4.6815 E-14*I, 0.27639 + 5.5667 E-15*I]~ */
75 hah [100] -( const (1,0,0,2)^2*E(1/60*100)*E(2/60/100)+const (1,0,0,1)*const

(1,1,0,2)*E( -11/60*100)*E(2/60/100))
76 /* = 2.1640 E-205 + 7.5473 E -206*I */
77 const ( -1/(100+1/2) ,0,0,2) -(const (1,0,0,2)*const (100+1/2 ,0 ,0 ,2)*E

( -1/60*(100+1/2))*E( -1/60/ denominator (100+1/2)/numerator (100+1/2))*E
( -1/60/(100+1/2))+const (1,0,0,1)*const (100+1/2 ,1 ,0 ,2)*E(11/60*(100+1/2)
)*E( -1/60/(100+1/2))*E( -1/60/ denominator (100+1/2)/numerator (100+1/2)))

78 /* = -5.7703 E-205 + 4.8749 E -205*I */
79 const ( -1/(100+7/11) ,0,0,2) -(const (1,0,0,2)*const (100+7/11 ,0 ,0 ,2)*E

( -1/60*(100+7/11))*E( -1/60/ denominator (100+7/11)/numerator (100+7/11))*E
( -1/60/(100+7/11))+const (1,0,0,1)*const (100+7/11 ,1 ,0 ,2)*E
(11/60*(100+7/11))*E( -1/60/(100+7/11))*E( -1/60/ denominator (100+7/11)/
numerator (100+7/11)))

80 /* = 1.2328 E-202 - 1.1016 E -202*I */
81 const ( -1/(100+7/11) ,1,0,2) -(const (1,1,0,2)*const (100+7/11 ,0 ,0 ,2)*E

( -1/60*(100+7/11))*E( -1/60/ denominator (100+7/11)/numerator (100+7/11))*E
(11/60/(100+7/11))+const (1,1,0,1)*const (100+7/11 ,1 ,0 ,2)*E
(11/60*(100+7/11))*E(11/60/(100+7/11))*E( -1/60/ denominator (100+7/11)/
numerator (100+7/11)))

82 \\ = 1.6434 E-202 - 9.6018 E -203*I
83 const ( -1/(100+7/11) ,1,0,1) -(const (1,1,0,2)*const (100+7/11 ,0 ,0 ,1)*E

( -1/60*(100+7/11))*E(11/60/ denominator (100+7/11)/numerator (100+7/11))*E
(11/60/(100+7/11))+const (1,1,0,1)*const (100+7/11 ,1 ,0 ,1)*E
(11/60*(100+7/11))*E(11/60/(100+7/11))*E(11/60/ denominator (100+7/11)/
numerator (100+7/11)))

84 \\ = 2.0538 E-202 + 2.3767 E -202*I

Code 33 (The leading asymptotics of the A = 4 Nahm sum).

1 prec =200;
2 default(realprecision ,prec)
3 default(format ,"g.5")
4 f(q,A,m,n,N=ceil(abs(real(sqrt(log (10^(- prec))/log(abs(q))*2/A)))))=local(

si ,qk ,t,s);si=E(n);qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=qk^A*t/(1-qk);s=s+t
*qk^(m-A/2));s

5 X=polroots(x^4+x-1);
6 xx=vector(4,j,log(X[j])/(2*Pi*I));
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7 -1/(2*Pi*I)*log(1-X[1]) +4*(xx[1]+k)+j
8 /* = 4*k + j + 2 */
9 -1/(2*Pi*I)*log(1-X[2]) +4*(xx[2]+k)+j

10 /* = 4*k + j */
11 -1/(2*Pi*I)*log(1-X[3]) +4*(xx[3]+k)+j
12 /* = 4*k + j - 1 */
13 -1/(2*Pi*I)*log(1-X[4]) +4*(xx[4]+k)+j
14 /* = 4*k + j + 1 */
15 V=vector (4);
16 V[1]= dilog(X[1])-Pi ^2/6+2*(2* Pi*I)^2*(xx[1]+k)^2-(2*Pi*I)^2*(4*k+2)*(xx

[1]+k)
17 /* = 78.957*k^2 + 78.957*k + 17.203 */
18 V[2]= dilog(X[2])-Pi ^2/6+2*(2* Pi*I)^2*(xx[2]+k)^2-(2*Pi*I)^2*(4*k)*(xx[2]+k

)
19 /* = 78.957*k^2 - 0.50498 */
20 V[3]= dilog(X[3])-Pi ^2/6+2*(2* Pi*I)^2*(xx[3]+k)^2-(2*Pi*I)^2*(4*k-1)*(xx

[3]+k)
21 /* = 78.957*k^2 - 39.478*k + 3.1656 - 0.98137*I */
22 V[4]= dilog(X[4])-Pi ^2/6+2*(2* Pi*I)^2*(xx[4]+k)^2-(2*Pi*I)^2*(4*k+1)*(xx

[4]+k)
23 /* = 78.957*k^2 + 39.478*k + 3.1656 + 0.98137*I */
24 V=subst(V,k,0)
25 huh=vector (2000);
26 for(k=1000 ,1012 , huh[k]=f(E(E(0.01)/k) ,4,0));
27 asymp(huh ,1000 ,10)
28 /* [0.98674 - 0.55536*I, -9.1759 E-22 + 1.2290 E-21*I, 0.43783 + 0.17519*I

] */
29 E(V[4]/(2* Pi*I)^2/E(0.01))
30 /* = 0.98674 - 0.55536*I */
31 1/sqrt(1-X[4])/sqrt(X[4]/(1 -X[4]) +4)
32 /* = 0.43783 + 0.17519*I */
33 huh1=vector (2000);
34 for(k=1000 ,1012 , huh1[k]=( huh[k]/E(V[4]/(2* Pi*I)^2/E(0.01)*k)*sqrt(1-X[4])*

sqrt(X[4]/(1 -X[4]) +4) -1)/(2*Pi*I/(k/E(0.01))));
35 lim(huh1 ,1000 ,10)
36 /* = 0.051613 + 0.053815*I */
37 lindep ([lim(huh1 ,1000 ,10) *((1-X[4])*(X[4]/(1 -X[4]) +4))^3*24,1,X[4],X[4]^2,

X[4]^3] ,12)
38 /* = [1, -64, 100, 18, -54]~ */
39 hah=vector (2000);
40 for(k=1000 ,1012 , hah[k]=f(E(E(0.2)/k) ,4,0));
41 asymp(hah ,1000 ,10)
42 /* [1.0791 + 0.026806*I, 1.4777 E-21 + 1.0645 E-22*I, 0.73992 - 6.9681 E

-22*I] */
43 E(V[2]/(2* Pi*I)^2/E(0.2))
44 /* = 1.0791 + 0.026806*I */
45 1/sqrt(1-X[2])/sqrt(X[2]/(1 -X[2]) +4)
46 /* = 0.73992 + 0.E -2003*I */
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47 hah1=vector (2000);
48 for(k=1000 ,1012 , hah1[k]=( hah[k]/E(V[2]/(2* Pi*I)^2/E(0.2)*k)*sqrt(1-X[2])*

sqrt(X[2]/(1 -X[2]) +4) -1)/(2*Pi*I/(k/E(0.2))));
49 lim(hah1 ,1000 ,10)
50 /* = 0.018037 + 3.9407 E-26*I */
51 lindep ([lim(hah1 ,1000 ,10) *((1-X[2])*(X[2]/(1 -X[2]) +4))^3*24,1,X[2],X[2]^2,

X[2]^3] ,12)
52 /* = [-1, 64, -100, -18, 54]~ */
53 heh=vector (2000);
54 for(k=1000 ,1012 , heh[k]=f(E(E(0.49)/k) ,4,0));
55 asymp(heh ,1000 ,10)
56 /* = [0.98674 + 0.55536*I, -9.1759 E-22 - 1.2290 E-21*I, 0.43783 -

0.17519*I] */
57 E(V[3]/(2* Pi*I)^2/E(0.49))
58 /* = 0.98674 + 0.55536*I */
59 1/sqrt(1-X[3])/sqrt(X[3]/(1 -X[3]) +4)
60 /* = 0.43783 - 0.17519*I */
61 heh1=vector (2000);
62 for(k=1000 ,1012 , heh1[k]=( heh[k]/E(V[3]/(2* Pi*I)^2/E(0.49)*k)*sqrt(1-X[3])*

sqrt(X[3]/(1 -X[3]) +4) -1)/(2*Pi*I/(k/E(0.49))));
63 lim(heh1 ,1000 ,10)
64 /* = 0.051613 - 0.053815*I */
65 lindep ([lim(heh1 ,1000 ,10) *((1-X[3])*(X[3]/(1 -X[3]) +4))^3*24,1,X[3],X[3]^2,

X[3]^3] ,12)
66 /* = [1, -64, 100, 18, -54]~ */
67 const(al ,m,k)=local(c);c=denominator(al);sum(r=0,c-1,E((2*r^2+r*(4*k+m))*

al+(4*r+m)*xx[4]/c)*prod(s=0,c-1,(1-E((r+s+1+k)*al+xx[4]/c))^(1/2 -(r+s
+1)/c)))/sqrt(X[4]/(1 -X[4])*c+4*c)/prod(ell=1,abs(c) -1,(1-E(ell*al))
^(1/2- ell/abs(c)))

68 /*
69 {for(m=-3,3,for(c=-10,10,if(c,
70 huh=vector (2000);
71 for(k=1000 ,1006 , huh[k]=f(E(E(1/2 -0.01)*k/(c*E(1/2 -0.01)*k+1)) ,4,m));
72 print([m,c,asymp(huh ,1000 ,5) [3]/E(-V[4]/(2* Pi*I)^2/c)/const (1/c,m,0) -1])))

)}
73 {for(m=-3,3,for(c=-5,5,if(c,
74 huh=vector (2000);
75 for(k=1000 ,1006 , huh[k]=f(E((2*E(1/2 -0.01)*k+1) /((2*c+1)*E(1/2 -0.01)*k+(c

+1))),4,m));
76 print([m,c,asymp(huh ,1000 ,5) [3]/E(-V[4]/(2* Pi*I)^2*(c+1) /(2*c+1))/const

(2/(2*c+1),m,0) -1]))))}
77 {for(m=-3,3,for(c=-3,3,if(c,
78 huh=vector (2000);
79 for(k=1000 ,1006 , huh[k]=f(E((3*E(1/2 -0.01)*k+2) /((3*c+1)*E(1/2 -0.01)*k+(2*c

+1))),4,m));
80 print([m,c,asymp(huh ,1000 ,5) [3]/E(-V[4]/(2* Pi*I)^2*(2*c+1) /(3*c+1))/const

(3/(3*c+1),m,0) -1]))))}
81 [7,-3;7*c+5,-3*c-2]
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82 {for(m=0,0,for(c=-3,3,if(c,
83 huh=vector (2000);
84 for(k=1000 ,1006 , huh[k]=f(E((7*E(1/2 -0.01)*k-3) /((7*c+5)*E(1/2 -0.01)*k+(-3*

c-2))) ,4,m));
85 print([m,c,asymp(huh ,1000 ,5) [3]/E(-V[4]/(2* Pi*I)^2*( -3*c-2) /(7*c+5))/const

(7/(7*c+5),m,0) -1]))))}
86 */
87 hah=vector (2000);
88 for(k=200,206,hah[k]= const (1/k,0,0);print([k,gettime ()]))
89 hah0=vector (2000);
90 for(k=200,206, hah0[k]=(hah[k]/E(V[4]/(2* Pi*I)^2*k)/E(V[4]/(2* Pi*I)^2/k)/

const (1,0,0)/const (1,1,0) -1)/(2*Pi*I/k))
91 lim(hah0 ,200 ,2)
92 /* = 0.051613 + 0.053814*I */
93 (64 -100*X[4] -18*X[4]^2+54*X[4]^3) /(X[4]+4*(1 -X[4]))^3/24
94 /* = 0.051613 + 0.053814*I */
95 for(k=200,206,hah[k]= const (1/(k+5/3) ,0,0);print([k,gettime ()]))
96 hah0=vector (2000);
97 for(k=200,206, hah0[k]=(hah[k]/E(V[4]/(2* Pi*I)^2*(k+5/3))/E(V[4]/(2* Pi*I)

^2/ denominator(k+5/3)/numerator(k+5/3))/const (1,0,0)/const(-(k+5/3)
,1,0) -1)/(2*Pi*I/(k+5/3)))

98 lim(hah0 ,200 ,2)
99 /* = 0.051613 + 0.053814*I */

100 const(al ,j,m,k,thfix)=local(c);c=denominator(al);sum(r=0,c-1,E((2*r^2+r
*(4*k+m))*al+(4*r+m)*xx[j]/c)*prod(s=0,c-1,((1-E((r+s+1+k)*al+xx[j]/c))
*E(thfix))^(1/2 -(r+s+1)/c)/E(thfix *(1/2 -(r+s+1)/c)))/sqrt(X[j]/(1-X[j])
*c+4*c)/prod(ell=1,abs(c) -1,(1-E(ell*al))^(1/2 -ell/abs(c))))

101 constmat(al ,m,k,thfix)=matrix(4,4,i,j,const(al,j,m+i-1,k,thfix))
102 round(constmat (1/5 ,1 ,0 , -0.001)*constmat (-1/5,-1-3,0,-0.001) ~*10^100)

/10^100
103 round(constmat (1/5 ,0 ,0 , -0.001)*constmat (-1/5,-3,0,-0.001) ~*10^100) /10^100
104 /*
105 [1 1 1 1]
106 [1 1 1 0]
107 [1 1 0 0]
108 [1 0 0 0]
109 */
110 constarbm(al,j,m,k,thfix ,sts)=local(c,Xtemp ,xxtemp);c=denominator(al);

Xtemp=polroots(1-xvar*E(thfix)-E(al*c*m)*(xvar*E(thfix))^4);for(j=1,4,
Xtemp[j]= Xtemp[j]*E(thfix));xxtemp=vector(4,j,(log(Xtemp[j]*E(thfix))-
log(E(thfix)))/(2*Pi*I));sum(r=0,c-1,E((2*r^2+r*(4*k+m))*al+(4*r+m)*
xxtemp[j]/c)*prod(s=0,c-1,((1-E((r+s+1+k)*al+xxtemp[j]/c))*E(thfix))
^(1/2 -(r+s+1)/c)/E(thfix *(1/2 -(r+s+1)/c)))/sqrt(Xtemp[j]/(1- Xtemp[j])*c
+4*c)/prod(ell=1,abs(c) -1,(1-E(ell*al))^(1/2- ell/abs(c))))/if(sts ,E(m*
xxtemp[j]/c) ,1)

111 constarbmmat(al,m,k,thfix)=matrix(4,4,i,j,constarbm(al,j,m+i-1,k,thfix))
112 A(t,q)=[0,1,0,0;0,0,1,0;0,0,0,1;1/(t*q^2) ,-1/(t*q^2) ,0,0];
113 P=[1,1,1,1;1,1,1,0;1,1,0,0;1,0,0,0];
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114 A(E(I/11),E(1/11))*constarbmmat (1/11,I,0 , -0.001)-constarbmmat (1/11 ,I
+1,0, -0.001)

115 constarbmmat (-1/5,-I*10 -3,0, -0.001)~*P^(-1)*constarbmmat (1/5,I
*10 ,0 , -0.001)

116 for(k=0,200, print ([k/100. ,([ constarbm (1/7 ,2 ,2+100*I+k/100 ,0 , -0.000001 ,1),
constarbm (1/7 ,3 ,2+100*I+k/100 ,0 , -0.000001 ,1),constarbm (1/7 ,4 ,2+100*I+k
/100 ,0 , -0.000001 ,1)]/E((1.5+(k/100+I*100) /2) /7/3)*sqrt (3))]))

117 for(k=0,200, print ([k/100. ,([ constarbm (11/13 ,2 ,2+100*I+k/100 ,0 , -0.000001 ,1)
,constarbm (11/13 ,3 ,2+100*I+k/100 ,0 , -0.000001 ,1),constarbm
(11/13 ,4 ,2+100*I+k/100 ,0 , -0.000001 ,1)]/E((1.5+(k/100+I*100) /2) *11/13/3)
*sqrt (3))]))

118

119

120 {constarbmvecbits(al,j,m,k,thfix)=local(c,Xtemp ,xxtemp);c=denominator(al);
Xtemp=polroots(1-xvar*E(thfix)-E(al*c*m)*(xvar*E(thfix))^4);for(j=1,4,
Xtemp[j]= Xtemp[j]*E(thfix));xxtemp=vector(4,j,(log(Xtemp[j]*E(thfix))-
log(E(thfix)))/(2*Pi*I));

121 [sum(r=0,c-1,E((2*r^2+r*(4*k+m))*al+4*r*xxtemp[j]/c)/qpoch(E(al+xxtemp[j]/
c),E(al),r)),

122 E(m*xxtemp[j]/c),
123 prod(s=0,c-1,((1-E((s+1+k)*al+xxtemp[j]/c))*E(thfix))^(1/2 -(s+1)/c)/E(

thfix *(1/2 -(s+1)/c))),
124 1/sqrt(Xtemp[j]/(1- Xtemp[j])*c+4*c),
125 1/prod(ell=1,abs(c) -1,(1-E(ell*al))^(1/2- ell/abs(c)))]}
126

127 constarbmvecbits (11/13 ,2 ,2+100*I,0 , -0.000001)
128

129 {constarbmvecbitsasym(al ,j,m,k,thfix)=local(c,Xtemp ,xxtemp);c=denominator(
al);Xtemp=polroots(1-xvar*E(thfix)-E(al*c*m)*(xvar*E(thfix))^4);for(j
=1,4,Xtemp[j]=Xtemp[j]*E(thfix));xxtemp=vector(4,j,(log(Xtemp[j]*E(
thfix))-log(E(thfix)))/(2*Pi*I));

130 [sum(r=0,c-1,(-1)^r*E(3*al*r^2/2 + ((al*m*c+3* xxtemp[j])*2-al*c)/2/c*r)),
131 E(m*xxtemp[j]/c),
132 prod(s=0,c-1,((-E((s+1+k)*al+xxtemp[j]/c))*E(thfix))^(1/2 -(s+1)/c)/E(thfix

*(1/2 -(s+1)/c))),
133 1/sqrt (3*c),
134 1/prod(ell=1,abs(c) -1,(1-E(ell*al))^(1/2- ell/abs(c)))]}
135

136 constarbmvecbitsasym (11/13 ,2 ,2+100*I,0 , -0.000001)
137

138

139

140

141

142

143

144

145
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146

147 constarbm(al,j,m,k,thfix ,sts)=local(c,Xtemp ,xxtemp);c=denominator(al);
Xtemp=polroots(1-xvar*E(thfix)-E(al*c*m)*(xvar*E(thfix))^4);for(j=1,4,
Xtemp[j]= Xtemp[j]*E(thfix));xxtemp=vector(4,j,(log(Xtemp[j]*E(thfix))-
log(E(thfix)))/(2*Pi*I));sum(r=0,c-1,E((2*r^2+r*(4*k+m))*al+(4*r+m)*
xxtemp[j]/c)/qpoch(E(al+xxtemp[j]/c),E(al),r))*prod(s=0,c-1,((1-E((s+1+
k)*al+xxtemp[j]/c))*E(thfix))^(1/2 -(s+1)/c)/E(thfix *(1/2 -(s+1)/c)))/
sqrt(Xtemp[j]/(1- Xtemp[j])*c+4*c)/prod(ell=1,abs(c) -1,(1-E(ell*al))
^(1/2- ell/abs(c)))/if(sts ,E(m*xxtemp[j]/c) ,1)

148

149 constarbm (11/13 ,2 ,2+100*I,0 , -0.000001)
150

151

152

153 \r nahm4data
154 delta=vector(4,j,X[j]+4*(1 -X[j]));
155 A4=matrix(length(A4OZ),4,k,j,A4OZ[k]*[1,X[j],X[j]^2,X[j]^3]~/ DD(k)/delta[j

]^(3*k));
156 a(k,j)=if(k,A4[k,j],1)/sqrt(delta[j]);
157 polroots(numerator(bestapprPade(serconvol(sum(k=0,120,a(k,4)*x^k)+O(x^121)

,exp(x+O(x^121)))))/subst(numerator(bestapprPade(serconvol(sum(k=0,120,
a(k,4)*x^k)+O(x^121) ,exp(x+O(x^121))))),x,0))

158 polroots(denominator(bestapprPade(serconvol(sum(k=0,120,a(k,4)*x^k)+O(x
^121),exp(x+O(x^121)))))/subst(denominator(bestapprPade(serconvol(sum(k
=0,120,a(k,4)*x^k)+O(x^121),exp(x+O(x^121))))),x,0))

159 {aa(k,j,jj ,H,kk=0)=sum(l=0,H,(k-1-l)!*a(l,jj)/(V[jj]-V[j]+kk*4*Pi^2)^(k-l)
)/2/Pi/I}

160 [a(100 ,1),a(100 ,2),a(100 ,3),a(100 ,4)]
161 /* = [ -1.8298 E40 + 0.E-171*I, -8.5822 E96 + 0.E16*I, 9.8017 E96 - 6.4042

E96*I, 9.8017 E96 + 6.4042 E96*I] */
162 [a(100 ,1) -(aa(100,1,3,0)-aa(100,1,4,0)),a(100 ,2) -(-aa(100,2,3,0)+aa

(100,2,4,0)),a(100 ,3)-aa(100,3,2,0),a(100 ,4)+aa(100,4,2,0)]
163 /* = [ -2.1917 E38 + 0.E-171*I, -1.8587 E94 + 0.E16*I, 5.3806 E93 - 5.9790

E93*I, 5.3806 E93 + 5.9790 E93*I] */
164 [a(100 ,1) -(aa(100,1,3 ,10)-aa(100 ,1 ,4 ,10)),a(100 ,2) -(-aa(100,2,3 ,10)+aa

(100 ,2 ,4 ,10)),a(100 ,3)-aa(100,3 ,2 ,10),a(100 ,4)+aa(100,4,2 ,10)]
165 /* = [1.1426 E31 + 0.E-171*I, -1.3188 E81 + 0.E16*I, -8.8103 E80 + 2.6430

E80*I, -8.8103 E80 - 2.6430 E80*I] */
166 local(tx);tx=serreverse(x/(V[2]-V[4]-x)+O(x^126));confser4m2=sum(k=1,125,

tx^k/(k-1)!*a(k,4));
167 local(tx);tx=serreverse(x/(V[2]-V[4]-x)+O(x^126));confser4m2a1=sum(k

=1,125,tx^k/(k-1)!*aa(k,4,1,k-1));
168 polcoeff(confser4m2 ,125)
169 /* = -1.5668 E10 - 3.3495 E10*I */
170 polcoeff(confser4m2a1 ,125)
171 /* = -1.5668 E10 - 3.3495 E10*I */
172

173 qpoch(x,q,n)=prod(j=0,n-1,1-x*q^j);
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174 th(x,q,N,kkk=0)=local(qk,sp,sm,bi,s);qk=1;sp=1;sm=x^(-1);bi=1;s=bi*(0^ kkk*
sp -(-1)^kkk*sm);for(k=1,N,qk=qk*q;sp=sp*x;sm=sm/x;bi=-bi*qk;s=s+bi*(k^
kkk*sp -(-k-1)^kkk*sm));s

175

176 GG(qB,A,B,r,tt ,N)=local(qk,q,t,s);q=qB^B;qk=qB^r;t=qB^(A*r*(r+1) /2)*tt^r/
qpoch(q,q,r);s=t;for(k=1,N,for(j=1,B,qk=qk*qB;t=qk^A*tt*t/(1-qk^B));s=s
+t);s

177

178 GGmat(q4 ,tt,N)=matrix(4,4,i,j,GG(q4 ,3,4,j-1,q4^(4*i-4)*tt,N))
179

180 TH(q8,m,N)=local(t);t=exp(eps/2+m*eps/4+eps ^2*Gf(q8^8,2,N)/4+O(eps ^5))*[th
(-q8^(8*m)*exp(eps+O(eps^5)),q8^32,N),-q8^5*q8^(2*m)*exp(eps /4+O(eps^5)
)*th(-q8^(8*m+8)*exp(eps+O(eps ^5)),q8^32,N),q8^12*q8^(4*m)*exp(eps/2+O(
eps ^5))*th(-q8^(8*m+16)*exp(eps+O(eps^5)),q8^32,N),-q8^21*q8^(6*m)*exp
(3* eps /4+O(eps^5))*th(-q8^(8*m+24)*exp(eps+O(eps ^5)),q8^32,N)]; matrix
(4,4,i,j,polcoeff(t[i],j-1+if(j==4 ,1),eps))

181

182 TH(q8+O(q8 ^1000) ,1,600)*TH(q8+O(q8 ^1000) ,0,600)^(-1)
183

184 TH(q8+O(q8 ^1000) ,2,600)*TH(q8+O(q8 ^1000) ,1,600)^(-1)
185

186 (E((I*20) /2)*sqrt (20*I/4)*E(-1/8)*matrix(4,4,i,j,I^((i-1)*(j-1)))*TH(E(I
*20/8) ,0,1000)*matdiagonal ([1,( -20*I) ,(-20*I)^2,(-20*I)^4]))^(-1)*E
(-1/(I*20) /2)*TH(E(-1/(I*20) /8) ,0,1000)

187

188 GGG(q8 ,m,N)=matdiagonal ([1,q8^(8*m),q8^(16*m-32),q8^(24*m-96)])*GGmat(q8
^2,q8^(-2*m-3),N)*TH(q8,m,N)/th(1/q8^16,q8^24,N)

189

190 GGG(q8+O(q8 ^1000) ,0,100)[1,1]-f(q8^8+O(q8 ^1000) ,4,2,0,100)
191

192 PGGG2f(q)=[1,0,0,0;-q^(-3) - q^(-2) - q^(-1), q^(-3) + q^(-2) + 2*q^(-1) +
1 + q, -q^2 - q^3 - q^4 - q^5 - q^12, q^12;q^(-5) + q^(-4) + q^(-3), -

q^(-5) - 2*q^(-4) - 2*q^(-3) - 2*q^(-2) - q^(-1) + q^3, 1 + 2*q + 2*q^2
+ q^3 + q^4 + q^10 + q^11, -q^10 - q^11;-q^(-6) - q^(-1), q^(-6) + q

^(-5) + q^(-4) - q^2, -q^(-1) - 1 - q - q^9, q^9]
193

194 vectorv(4,j,f(q8^8+O(q8 ^1000) ,4,j-1 ,0 ,100))-PGGG2f(q8^8)*GGG(q8+O(q8 ^1000)
,-2,100)[,1]

195

196

197 \p2000
198 \ps200
199 default(format ,"g.5")
200 X=polroots(x^4+x-1);
201 xx=vector(4,j,log(X[j])/(2*Pi*I));
202 V=vector (4);
203 V[1]= dilog(X[1])-Pi ^2/6+2*(2* Pi*I)^2*(xx[1]+k)^2-(2*Pi*I)^2*(4*k+2)*(xx

[1]+k)
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204 V[2]= dilog(X[2])-Pi ^2/6+2*(2* Pi*I)^2*(xx[2]+k)^2-(2*Pi*I)^2*(4*k)*(xx[2]+k
)

205 V[3]= dilog(X[3])-Pi ^2/6+2*(2* Pi*I)^2*(xx[3]+k)^2-(2*Pi*I)^2*(4*k-1)*(xx
[3]+k)

206 V[4]= dilog(X[4])-Pi ^2/6+2*(2* Pi*I)^2*(xx[4]+k)^2-(2*Pi*I)^2*(4*k+1)*(xx
[4]+k)

207 V=subst(V,k,0)
208 delta=vector(4,j,X[j]+4*(1 -X[j]));
209 A4=matrix(length(A4OZ),4,k,j,A4OZ[k]*[1,X[j],X[j]^2,X[j]^3]~/ DD(k)/delta[j

]^(3*k));
210 a(k,j)=if(k,A4[k,j],1)/sqrt(delta[j]);
211

212 phi1 =1+sum(k=1,128,A4[k,1]*x^k)+O(x^129);
213 phi2 =1+sum(k=1,128,A4[k,2]*x^k)+O(x^129);
214 phi3 =1+sum(k=1,128,A4[k,3]*x^k)+O(x^129);
215 phi4 =1+sum(k=1,128,A4[k,4]*x^k)+O(x^129);
216

217 \\borel of a = series in x
218 borel(a) = serconvol(a,exp(x));
219

220 \\pade of a = series in x
221 pade(a,N) = local(t); t=bestapprPade(a+O(x^N))
222

223 pade1=pade(borel(phi1) ,128);
224 pade2=pade(borel(phi2) ,128);
225 pade3=pade(borel(phi3) ,128);
226 pade4=pade(borel(phi4) ,128);
227

228 \\borel -pade resummation at tau of a series a with N coeffs
229 {resum(tau ,pb)= intnum(xi=0,[+oo ,1],exp(-xi)*subst(pb,x,xi*tau))};
230

231 rphi1(tau)=E(-V[1]* tau /(2*Pi*I)^2)/sqrt(delta [1])*resum (2*Pi*I/tau ,phi1)
232 rphi2(tau)=E(-V[2]* tau /(2*Pi*I)^2)/sqrt(delta [2])*resum (2*Pi*I/tau ,phi2)
233 rphi3(tau)=E(-V[3]* tau /(2*Pi*I)^2)/sqrt(delta [3])*resum (2*Pi*I/tau ,phi3)
234 rphi4(tau)=E(-V[4]* tau /(2*Pi*I)^2)/sqrt(delta [4])*resum (2*Pi*I/tau ,phi4)
235

236 \p500
237 default(format ,"g.5")
238

239 f(E( -1/(1000*E(0.0001))) ,4,0)
240 \\ = 1.4799 E67 + 1.8058 E67*I
241 rphi3(E(0.0001) *1000)
242 \\ = 1.4799 E67 + 1.8057 E67*I
243

244 f(E( -1/(1000*E(0.0001))) ,4,0)/rphi3(E(0.0001) *1000)
245 \\ = 1.0000 - 2.7438 E-8*I
246

247 (f(E( -1/(1000*E(0.0001))) ,4,0)/rphi3(E(0.0001) *1000) -1)/E(E(0.0001) *1000)
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^3
248 \\ = 1.0197 - 2.4883 E-5*I
249

250 (f(E( -1/(1000*E(0.0001))) ,4,0)/rphi3(E(0.0001) *1000) -1-E(E(0.0001) *1000)
^3-E(E(0.0001) *1000)^4-E(E(0.0001) *1000)^5-E(E(0.0001) *1000)^6-E(E
(0.0001) *1000)^7-E(E(0.0001) *1000)^8-E(E(0.0001) *1000) ^9)/E(E(0.0001)
*1000) ^10

251 \\ = 2.0397 - 5.0718 E-5*I
252

253 f(E( -1/(1000*E(0.0001))) ,4,0)-rphi3(E(0.0001) *1000)*f(E(1000*E(0.0001))
,4,1,0,100)

254 \\ = 0.20122 + 0.68776*I
255

256 f(E( -1/(1000*E(0.0001))) ,4,0)-rphi3(E(0.0001) *1000)*f(E(1000*E(0.0001))
,4,1,0,100)-rphi2(E(0.0001) *1000)*f(E(1000*E(0.0001)) ,4,0,0,100)-rphi1(
E(0.0001) *1000)*f(E(1000*E(0.0001)) ,4,2,0,100)-rphi4(E(0.0001) *1000)*E
(1000*E(0.0001))*f(E(1000*E(0.0001)) ,4,3,0,100)

257 \\ = 5.5399 E-138 - 3.7010 E -138*I
258

259 f(E( -1/(1000*E(0.00001))) ,4,0)-rphi3(E(0.00001) *1000)*f(E(1000*E(0.00001))
,4,1,0,100)-rphi2(E(0.00001) *1000)*f(E(1000*E(0.00001)) ,4,0,0,100)-
rphi1(E(0.00001) *1000)*f(E(1000*E(0.00001)) ,4,2,0,100)-rphi4(E(0.00001)
*1000)*E(1000*E(0.00001))*f(E(1000*E(0.00001)) ,4,3,0,100)

260

261 GGG(E( -1/(1000*E(0.00001))/8) ,-2,100000)[1,]-[ rphi1(E(0.00001) *1000) ,rphi2
(E(0.00001) *1000) ,rphi3(E(0.00001) *1000) ,rphi4(E(0.00001) *1000)
]*[0,0,1,0;1,0,0,0;0,1,0,0;0,0,0,E(1000*E(0.00001))]* PGGG2f(E(1000*E
(0.00001)))*GGG(E(1000*E(0.00001) /8) ,-2,100)*matdiagonal ([1 ,1000*E
(0.00001) ,(1000*E(0.00001))^2 ,(1000*E(0.00001))^4])

262

263 f(E( -1/(1000*E(1/2 -0.00001))) ,4,0)-rphi4(E(1/2 -0.00001) *1000)*f(E(1000*E
(1/2 -0.00001)) ,4,1,0,100)-rphi2(E(1/2 -0.00001) *1000)*f(E(1000*E
(1/2 -0.00001)) ,4,0,0,100)-rphi1(E(1/2 -0.00001) *1000)*f(E(1000*E
(1/2 -0.00001)) ,4,2,0,100)-rphi3(E(1/2 -0.00001) *1000)*E(1000*E
(1/2 -0.00001))*f(E(1000*E(1/2 -0.00001)) ,4,3,0,100)

264

265 GGG(E( -1/(1000*E(1/2 -0.00001))/8) ,-2,100000)[1,]-[ rphi1(E(1/2 -0.00001)
*1000) ,rphi2(E(1/2 -0.00001) *1000) ,rphi3(E(1/2 -0.00001) *1000) ,rphi4(E
(1/2 -0.00001) *1000) ]*[0,0,1,0;1,0,0,0;0,0,0,E(1000*E(1/2 -0.00001))
;0,1,0,0]* PGGG2f(E(1000*E(1/2 -0.00001)))*GGG(E(1000*E(1/2 -0.00001) /8)
,-2,100)*[1,0,0,0;0,-1,0,0;0,0,1,0;0,0,0,1]* matdiagonal ([1 ,1000*E
(1/2 -0.00001) ,(1000*E(1/2 -0.00001))^2 ,(1000*E(1/2 -0.00001))^4])

266

267

268 [0,0,1,0;1,0,0,0;0,1,0,0;0,0,0,q8^8]* PGGG2f(q8^8)*GGG(q8+O(q8 ^200) ,-2,100)
*([0,0,1,0;1,0,0,0;0,0,0,q8^8;0,1,0,0]* PGGG2f(q8^8)*GGG(q8+O(q8 ^200)
,-2,100)*[1,0,0,0;0,-1,0,0;0,0,1,0;0,0,0,1])^(-1)

269
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270 /*
271 [1 - q8^8 - 2*q8^16 - 2*q8^24 - q8^32 + q8^40 + 3*q8^48 + 7*q8^56 + 10*q8

^64 + 14*q8^72 + 16*q8^80 + 17*q8^88 + 15*q8^96 + 11*q8^104 + 2*q8^112
- 12*q8^120 - 30*q8^128 + O(q8 ^135) 1 + q8^8 + q8^16 - q8^32 - 3*q8^40
- 6*q8^48 - 8*q8^56 - 10*q8^64 - 10*q8^72 - 9*q8^80 - 5*q8^88 + q8^96 +
11*q8^104 + 23*q8^112 + 38*q8^120 + 55*q8^128 + O(q8 ^135) 1 - q8^16 -

3*q8^24 - 3*q8^32 - 4*q8^40 - 4*q8^48 - 2*q8^56 + q8^64 + 6*q8^72 + 12*
q8^80 + 20*q8^88 + 27*q8^96 + 36*q8^104 + 42*q8^112 + 46*q8^120 + 45*q8
^128 + O(q8 ^135) -1 - q8^8 + 2*q8^24 + 4*q8^32 + 5*q8^40 + 7*q8^48 + 6*
q8^56 + 5*q8^64 - 5*q8^80 - 14*q8^88 - 23*q8^96 - 36*q8^104 - 48*q8^112
- 60*q8^120 - 69*q8^128 + O(q8 ^135)]

272

273 [q8^16 + 2*q8^24 + 2*q8^32 + 2*q8^40 - 2*q8^56 - 5*q8^64 - 9*q8^72 - 13*q8
^80 - 17*q8^88 - 20*q8^96 - 21*q8^104 - 19*q8^112 - 15*q8^120 - 5*q8
^128 + O(q8 ^135) 1 - q8^8 - q8^16 - q8^24 - q8^32 + q8^40 + 2*q8^48 +
5*q8^56 + 8*q8^64 + 10*q8^72 + 12*q8^80 + 13*q8^88 + 10*q8^96 + 7*q8
^104 - 11*q8^120 - 24*q8^128 + O(q8^135) -q8^8 + q8^24 + 2*q8^32 + 4*q8
^40 + 4*q8^48 + 5*q8^56 + 4*q8^64 + 2*q8^72 - 2*q8^80 - 7*q8^88 - 16*q8
^96 - 23*q8^104 - 33*q8^112 - 42*q8^120 - 51*q8^128 + O(q8^135) q8^8 +
q8^16 - q8^32 - 4*q8^40 - 5*q8^48 - 7*q8^56 - 8*q8^64 - 7*q8^72 - 5*q8
^80 - q8^88 + 7*q8^96 + 16*q8^104 + 27*q8^112 + 42*q8^120 + 55*q8^128 +
O(q8 ^135)]

274

275 [-q8^8 - q8^16 + q8^24 + 2*q8^32 + 4*q8^40 + 5*q8^48 + 6*q8^56 + 5*q8^64 +
3*q8^72 - 7*q8^88 - 14*q8^96 - 24*q8^104 - 34*q8^112 - 47*q8^120 - 55*

q8^128 + O(q8 ^135) 1 - q8^16 - q8^24 - 3*q8^32 - 3*q8^40 - 4*q8^48 - 2*
q8^56 + 4*q8^72 + 9*q8^80 + 16*q8^88 + 22*q8^96 + 29*q8^104 + 35*q8^112
+ 38*q8^120 + 39*q8^128 + O(q8^135) 1 - q8^8 - 2*q8^16 - q8^24 - q8^32
+ q8^40 + 2*q8^48 + 7*q8^56 + 8*q8^64 + 12*q8^72 + 14*q8^80 + 16*q8^88
+ 12*q8^96 + 10*q8^104 + q8^112 - 11*q8^120 - 27*q8^128 + O(q8^135) 2*

q8^16 + 2*q8^24 + 3*q8^32 + q8^40 - 4*q8^56 - 8*q8^64 - 12*q8^72 - 17*
q8^80 - 21*q8^88 - 24*q8^96 - 23*q8^104 - 22*q8^112 - 11*q8^120 - q8
^128 + O(q8 ^135)]

276

277 [q8^8 - 2*q8^24 - 3*q8^32 - 5*q8^40 - 4*q8^48 - 4*q8^56 - q8^64 + 2*q8^72
+ 9*q8^80 + 16*q8^88 + 25*q8^96 + 33*q8^104 + 42*q8^112 + 49*q8^120 +
52*q8^128 + O(q8 ^135) -1 + q8^8 + q8^16 + 2*q8^24 + 3*q8^32 + 2*q8^40 +
2*q8^48 - q8^56 - 5*q8^64 - 10*q8^72 - 15*q8^80 - 22*q8^88 - 25*q8^96

- 30*q8^104 - 30*q8^112 - 27*q8^120 - 19*q8^128 + O(q8^135) 2*q8^8 + q8
^16 + q8^24 - q8^32 - 3*q8^40 - 5*q8^48 - 8*q8^56 - 10*q8^64 - 12*q8^72
- 11*q8^80 - 9*q8^88 - q8^96 + 5*q8^104 + 20*q8^112 + 34*q8^120 + 55*

q8^128 + O(q8 ^135) 1 - q8^8 - 2*q8^16 - 2*q8^24 - 2*q8^32 + 2*q8^40 +
3*q8^48 + 8*q8^56 + 11*q8^64 + 16*q8^72 + 17*q8^80 + 20*q8^88 + 15*q8
^96 + 12*q8^104 + q8^112 - 14*q8^120 - 34*q8^128 + O(q8^135)]

278 */

The file nahm4data begins as follows.

1 {A4OZ=vector (129) };
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2 {A4OZ [1]=[-64, 100, 18, -54]};
3 {A4OZ [2]=[ -104876 , 113812 , 29836, 17388]};
4 {A4OZ [3]=[ -79093616 , -1648464240 , 2928617760 , -694542712]};
5 ...

D.2 Knots

Code 34 (Asymptotics of the Kashaev invariant of the trefoil).

1 prec =2000;
2 default(realprecision ,prec)
3 default(format ,"g.5")
4 E(x)=exp (2*Pi*I*x);
5 J(x)=local(dx,qk,qq,t,s);qq=E(x);dx=denominator(x);qk=1;t=1;s=t;for(k=1,dx

-1,qk=qk*qq;t=t*(1-qk)^2;s=s+qk*t);s
6 Jq(q,N)=local(qk ,t,s);qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=t*(1-qk)^2;s=s+qk*t

);s
7 huh=vector (2000);
8 for(k=100,220,huh[k]=J(-1/k))
9 asymposc(huh ,100,5,E(0.42))

10 /* =
11 [1.0000 - 3.2503 E-9*I 5.0322 E-6 + 1.5038 E-6*I 0.99996 - 5.6844 E-6*I]
12

13 [ -0.12369 - 0.48175*I 5.0322 E-6 + 1.5038 E-6*I 0.99997 - 1.1274 E-5*I]
14 */
15 asymposc(huh ,100,5,E(0.57))
16 /* =
17 [ 0.96593 - 0.25882*I 1.5000 - 4.3098 E-11*I 0.70711 + 0.70711*I]
18

19 [ -0.061099 + 0.68460*I 1.5000 - 4.3098 E-11*I -1.5175 + 0.88145*I]
20 */
21 huh0=vector (2000);
22 for(k=100,220, huh0[k]=huh[k]-k^(3/2)*E(23/24*k)*E(1/8)*E(23/24/k)-subst(

bestapprPade(Jq(exp(x+O(x^10)) ,10) ,0),x,-2*Pi*I/k))
23 asymp(huh0 ,200 ,18)
24 /* = [1.0000 - 2.9525 E-12*I, -11.000 + 1.4843 E-8*I, 4.2882 E7 + 3.5833

E14*I] */
25 phi0=Jq(exp(x+O(x^101)) ,100);
26 a0(k)=polcoeff(phi0 ,k);
27 {aa0(k,H,kk=0)=sqrt (2*Pi)*sum(l=0,H,gamma(k-l+3/2) *( -1/24)^(l)/l!/(4*Pi

^2/24+ kk*4*Pi^2)^(k-l+3/2))}
28 a0(100)
29 /* = 2.6597 E137 */
30 a0(100) -aa0 (100 ,200)
31 /* = -0.00011742 */
32 a0(100) -aa0 (100 ,200)+aa0 (100 ,200 ,1)*5
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33 /* = -2.4509 E-34 */
34 a0(100) -aa0 (100 ,200)+aa0 (100 ,200 ,1) *5+aa0 (100 ,500 ,2)*7
35 /* = 1.7936 E-74 */
36

37

38 /* ********************************************** */
39 \\q-series for 3_1
40 /* ********************************************** */
41

42 {g0(q,m,N)=
43 local(qk ,s,t);
44 qk=1;
45 t=1;
46 s=t;
47 for(k=1,N,qk=q*qk;t=-qk*t/(1-qk);s=s+t*qk^m);
48 s}
49

50 {g1(q,m,N)=
51 local(qk ,s,t,G1);
52 G1=Gf(q,1,N);
53 qk=1;
54 t=1;
55 ha=0;
56 s=t*(m+1/4-G1+ha);
57 for(k=1,N,qk=q*qk;t=-qk*t/(1-qk);ha=ha+qk/(1-qk);s=s+qk^m*t*(k+m+1/4-G1+ha

));
58 s}
59

60 {g(q,eps ,N)=
61 local(qk ,s,t);
62 qk=1;
63 t=1;
64 s=t*exp(eps /2);
65 for(k=1,N,qk=q*qk;t=-qk*t/(1-qk*exp(eps));s=s+t*exp((k+1/2)*eps));
66 s*qpoch(q*exp(eps),q,N)/qpoch(q,q,N)}
67

68 g(q+O(q^10),x+O(x^3) ,30) -(g0(q+O(q^10) ,0,30)+x*g1(q+O(q^10) ,0,30)+O(x^2))
69

70 g0(q+O(q^50) ,0,50)
71 \\ = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + q^22 + q^26 - q^35 - q^40 + O

(q^50)
72

73 g1(q+O(q^50) ,0,50)*2
74 \\ = 1 - 5*q - 7*q^2 + 11*q^5 + 13*q^7 - 17*q^12 - 19*q^15 + 23*q^22 + 25*

q^26 - 29*q^35 - 31*q^40 + O(q^50)
75

76 {gL(q,m,N)=
77 local(qk ,s,t);
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78 qk=1;
79 t=1;
80 s=0;
81 for(k=1,N,qk=q*qk;t=-qk*t/(1-qk);s=s+qk^m*t/(1-qk));
82 1/4-Gf(1/q,1,N)-m+s}
83

84 /* ********************************************** */
85 \\ Habiro element
86 /* ********************************************** */
87

88 {F(q,N)=local(qk,s,t);qk=1;t=1;s=t;for(k=1,N,qk=q*qk;t=t*(1-qk);s=s+t);s}
89 \\ = 1 - x + 3/2*x^2 - 19/6*x^3 + 69/8*x^4 - 3451/120*x^5 + 27221/240*x^6

- 2602699/5040*x^7 + 35825749/13440*x^8 - 5581680571/362880*x^9 + O(x
^10)

90

91 /* ********************************************** */
92 \\ matrix of q-series
93 /* ********************************************** */
94

95

96 G(q,m,N)=[1 ,0;g1(q,m,N),g0(q,m,N)]
97

98 A(q,m)=[1 ,0;1/(1 -q^(m+1)) ,1/(1-q^(m+1))]
99

100 G(q+O(q^30) ,1,30)-A(q+O(q^30) ,0)*G(q+O(q^30) ,0,30)
101

102 GL(q,m,N)=[1,0;-gL(q,-m,N),g0(q,-m-1,N)]
103

104 G(q+O(q^30) ,0,30)^(-1)*A(q+O(q^30) ,0)^(-1)-G(q+O(q^30) ,1,30)^(-1)
105 GL(1/q+O(q^30) ,0,30)*A(q+O(q^30) ,0)^(-1)-GL(1/q+O(q^30) ,1,30)

Code 35 (Asymptotics of the Kashaev invariant of the figure eight knot).

1 prec =2000;
2 default(realprecision ,prec)
3 default(format ,"g.5")
4 E(x)=exp (2*Pi*I*x);
5 J(x)=local(dx,qk,qq,t,s);qq=E(x);dx=denominator(x);qk=1;t=1;s=t;for(k=1,dx

-1,qk=qk*qq;t=-t*(1-qk)^2/qk;s=s+t);s
6 Jq(q,N,m=0)=local(qk ,t,s);qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=-t*(1-qk)^2/qk;

s=s+t*qk^m);s
7 huh=vector (2000);
8 for(k=200,220,huh[k]=J(-1/k))
9 asymp(huh ,200 ,10)

10 /* = [1.3814 - 1.9035 E -1982*I, 1.5000 - 2.6077 E -1978*I, 0.75984 + 2.5320
E -1978*I] */

11 V=I*imag(dilog(E(1/6)))*2
12 /* = 2.0299*I */
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13 E(V/(2*Pi*I)^2)
14 /* = 1.3814 */
15 E(1/8)/sqrt(sqrt(-3))
16 huh1=vector (2000);
17 for(k=200,220, huh1[k]=(huh[k]/E(V/(2*Pi*I)^2*k)/(E(1/8)/sqrt(sqrt(-3))) -1)

/(2*Pi*I/k))
18 lim(huh1 ,200 ,10)*sqrt(-3)^3*DD(1)
19 /* = -11.000 - 2.2834 E -1979*I */
20 g(q,N=ceil(abs(real(sqrt(log(10^(- prec))/log(abs(q))*2)))))=local(qk ,t,s);

qk=1;t=1;s=t;for(k=1,N,qk=qk*q;t=-t*qk/(1-qk)^2;s=s+t);s
21 hoh=vector (2000);
22 for(k=100,220,hoh[k]=g(E(-1/(I*k)))*sqrt(I*k))
23 asymposc(hoh ,100,5,E(0.3))
24 /* =
25 [0.94827 + 0.31748*I -1.6319 E-8 - 1.7181 E-8*I 0.75984 + 7.9416 E-8*I]
26 [ -0.63925 - 1.2685*I -1.6319 E-8 - 1.7181 E-8*I 0.75984 + 9.3682 E-8*I] */
27 asymposc(hoh ,100,5,E( -0.3))
28 /* =
29 [0.94827 - 0.31748*I -1.6319 E-8 + 1.7181 E-8*I 7.9416 E-8 + 0.75984*I]
30 [ -0.63925 + 1.2685*I -1.6319 E-8 + 1.7181 E-8*I 9.3682 E-8 + 0.75984*I] */
31 asympv(hoh ,[E(V/(2*Pi*I)^2*I),E(-V/(2*Pi*I)^2*I)],[0,0],200,5)
32 G(q,N=ceil(abs(real(sqrt(log(10^(- prec))/log(abs(q))*2)))))=local(qk ,t,s,

ts ,G1);G1=Gf(q,1,N);qk=1;t=1;ts=0;s=t*(-4*G1+2*ts);for(k=1,N,qk=qk*q;ts
=ts+(1+qk)/(1-qk);t=-t*qk/(1-qk)^2;s=s+t*(-4*G1+2*ts));s

33 hah=vector (2000);
34 for(k=100,220,hah[k]=G(E(-1/(I*k)))/sqrt(I*k))
35 asymposc(hah ,100,5,E(0.3))
36 /* =
37 [0.94827 + 0.31748*I -1.6770 E-8 - 1.7203 E-8*I 0.75984 + 7.9405 E-8*I]
38 [ -0.63925 - 1.2685*I -1.6770 E-8 - 1.7203 E-8*I 0.75984 + 9.3944 E-8*I] */
39 asymposc(hah ,100,5,E( -0.3))
40 /* =
41 [0.94827 - 0.31748*I -1.6770 E-8 + 1.7203 E-8*I -7.9405 E-8 - 0.75984*I]
42 [ -0.63925 + 1.2685*I -1.6770 E-8 + 1.7203 E-8*I -9.3944 E-8 - 0.75984*I]

*/
43 asympv(hah ,[E(V/(2*Pi*I)^2*I),E(-V/(2*Pi*I)^2*I)],[0,0],200,5)
44 Ggoth(q,N=ceil(abs(real(sqrt(log (10^(- prec))/log(abs(q))*2)))))=local(qk ,t

,s,ts ,tss ,G1);G1=Gf(q,1,N);qk=1;t=1;ts=0;tss=0;s=t*(( -4*G1+2*ts)
^2/8 -1/24+ tss);for(k=1,N,qk=qk*q;ts=ts+(1+qk)/(1-qk);tss=tss+qk/(1-qk)
^2;t=-t*qk/(1-qk)^2;s=s+t*(( -4*G1+2*ts)^2/8 -1/24+ tss));s

45 heh=vector (2000);
46 for(k=200,220,heh[k]= Ggoth(E(-1/(I*k))))
47 asympv(heh ,[1,E(V/(2*Pi*I)^2*I),E(-V/(2*Pi*I)^2*I)] ,[0 ,3/2 ,3/2] ,200 ,5)
48 /* = [1.0000 + 7.9151 E -1986*I, -0.044774 + 0.044774*I, -0.044774 -

0.044774*I]~ */
49 \r 41data
50 heh1=vector (2000);
51 for(k=200,220, heh1[k]=(heh[k]-E(V/(2*Pi*I)^2*I*k)*(E(1/8)/sqrt(sqrt(-3)))*
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sqrt(I*k)^3/12*(1+ sum(ell=1,10,(-1)^ell*AK41OZ[ell]/DD(ell)/sqrt(-3)
^(3* ell)*(2*Pi*I/(I*k))^ell))-E(-V/(2*Pi*I)^2*I*k)*(E(1/8)/sqrt(-sqrt
(-3)))*sqrt(I*k)^3/12*(1+ sum(ell=1,10, AK41OZ[ell]/DD(ell)/sqrt(-3)^(3*
ell)*(2*Pi*I/(I*k))^ell)) -1)/(2*Pi*I/(I*k))^2)

52 asympv(heh1 ,[1,E(V/(2*Pi*I)^2*I),E(-V/(2*Pi*I)^2*I)] ,[0 ,1/2 ,1/2] ,200 ,5)
53 /* = [ -1.0000 - 9.1164 E -1981*I, -2.1472 E-11 + 2.7900 E-12*I, -2.1472 E

-11 - 2.7900 E-12*I]~ */
54 heh2=vector (2000);
55 for(k=200,220, heh2[k]=( heh1[k]+1) /(2*Pi*I/(I*k))^2)
56 asympv(heh2 ,[1,E(V/(2*Pi*I)^2*I),E(-V/(2*Pi*I)^2*I)] ,[0 ,1/2 ,1/2] ,200 ,5) *12
57 /* = [47.000 - 1.6569 E -1975*I, 5.0548 E-9 + 7.5165 E-10*I, 5.0548 E-9 -

7.5165 E-10*I]~ */
58 a(k,j)=1/ sqrt(-(-1)^j*sqrt(-3))*if(k,AK41OZ[k]/sqrt(-3)^(3*k)/DD(k)*(-1)^(

k+j+1) ,1)
59 polroots(numerator(bestapprPade(serconvol(sum(k=0,290,a(k,1)*x^k)+O(x^291)

,exp(x+O(x^291)))))/subst(numerator(bestapprPade(serconvol(sum(k=0,290,
a(k,1)*x^k)+O(x^291) ,exp(x+O(x^291))))),x,0))

60 polroots(denominator(bestapprPade(serconvol(sum(k=0,290,a(k,1)*x^k)+O(x
^291),exp(x+O(x^291)))))/subst(denominator(bestapprPade(serconvol(sum(k
=0,290,a(k,1)*x^k)+O(x^291),exp(x+O(x^291))))),x,0))

The file 41data begins as follows.
1 {AK41OZ=vector (296) };
2 {AK41OZ [1]=11};
3 {AK41OZ [2]=697};
4 {AK41OZ [3]=724351};
5 ...

D.3 Half surgery on the figure eight knot

Code 36 (Asymptotics of the WRT invariant and Ẑ series).

1 /* ********************************************** */
2 \\setup
3 /* ********************************************** */
4 \p 2000
5 \ps 200
6 default(parisize ,120000000)
7 default(format ,"g.5")
8

9 \\ qpochhammer
10 qpoch(a,q,n)=local(p,qn);p=1;qn=1;if(n>-1,for(k=1,n,p=p*(1-qn*a);qn=qn*q),

for(k=1,-n,qn=qn/q;p=p/(1-qn*a)));p;
11

12 qpochinfty(a,q,N,ss=1,WMW=ss)=local(s,t,qn);t=1;s=t;qn=1; for(k=1,N,qn=qn*q
^ss;t=-qn/q^(1/2+ ss/2)*t/(1-qn)*a*q^(ss/2-WMW/2);s=s+t);s^ss;
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13

14 /* ********************************************** */
15 \\ fields
16 /* ********************************************** */
17 \\ trace field , type [5,1] with discriminant -7215127 (a prime)
18 P(x)=x^7-x^6-2*x^5+6*x^4-11*x^3+6*x^2+3*x-1;
19 xi=polroots(P(T));
20 \\
21 \\[ -2.2411 , -0.43760 , 0.25599 , 1.3348 , 1.3483 , 0.36981 - 1.4410*I, 0.36981

+ 1.4410*I] where xi[3] is SL2R xi[6] and xi[7] are SL2C and others
are SU2

22

23 \\ finds elements of the n-th embedding of the trace field
24 find(x,n,e)=lindep ([x,1,xi[n],xi[n]^2,xi[n]^3,xi[n]^4,xi[n]^5,xi[n]^6],e)
25

26 \\ shape field
27 PP(z)=z^14+2*z^13+z^12 -4*z^10-8*z^9-10*z^8-13*z^7 -10*z^6-8*z^5-4*z^4+z

^2+2*z+1;
28 xixi=polroots(PP(T));
29 findsh(x,n,e)=lindep ([x,1,xixi[n],xixi[n]^2,xixi[n]^3,xixi[n]^4,xixi[n]^5,

xixi[n]^6,xixi[n]^7,xixi[n]^8,xixi[n]^9,xixi[n]^10, xixi[n]^11, xixi[n
]^12, xixi[n]^13] ,e)

30 \\
31 \\[0.61642 , 1.6223 , -0.69314 - 0.019415*I, -0.69314 + 0.019415*I, -1.4416

- 0.040379*I, -1.4416 + 0.040379*I, 0.47669 - 0.87907*I, 0.47669 +
0.87907*I, -0.42361 - 0.90585*I, -0.42361 + 0.90585*I, -0.19405 -
0.98099*I, -0.19405 + 0.98099*I, 0.15633 - 0.98770*I, 0.15633 +
0.98770*I]

32

33 \\ trace field from shape field
34 s2t(x)=-15-8*x-3*x^2+4*x^3+55*x^4+40*x^5+91*x^6+66*x^7+56*x^8+43*x^9+x

^10 -14*x^12 -11*x^13;
35 \\
36 \\ vector (14,j,s2t(xixi[j])) = [0.25599 , 0.25599 , 0.36981 + 1.4410*I,

0.36981 - 1.4410*I, 0.36981 - 1.4410*I, 0.36981 + 1.4410*I, -2.2411,
-2.2411, 1.3483 , 1.3483 , 1.3348 , 1.3348 , -0.43760 , -0.43760]

37 \\ therefore see that 1P->7,8PP|2P->13,14PP|3P->1,2PP|4P->11,12PP|5P->9,10
PP|6P->4,5PP|7P->3,6PP|

38

39 \\ shape field is quadratic extension
40 sot(x,j)=x^2+x*(-1-4*xi[j]-4*xi[j]^2+3* xi[j]^3-xi[j]^4+xi[j]^5+xi[j]^6)+1
41

42 \\ shapes from the trace field
43 t2s=vector(7,j,(-(-1-4*xi[j]-4*xi[j]^2+3* xi[j]^3-xi[j]^4+xi[j]^5+xi[j]^6)+

sqrt((-1-4*xi[j]-4*xi[j]^2+3* xi[j]^3-xi[j]^4+xi[j]^5+xi[j]^6) ^2-4))/2)
44

45 /* ********************************************** */
46 \\ complex volumes
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47 /* ********************************************** */
48 R(z,p,q)=dilog(z)+(log(z)+2*Pi*I*p)*(log(1-z) -2*Pi*I*q)/2;
49

50 \\ shapes
51 z1vec=vector(7,j,2*t2s[j]^13+3* t2s[j]^12+ t2s[j]^11 -9* t2s[j]^9 -12* t2s[j

]^8 -15* t2s[j]^7 -20* t2s[j]^6 -10* t2s[j]^5 -13* t2s[j]^4-t2s[j]^3+ t2s[j
]^2+2* t2s[j]+4);

52 z2vec=vector(7,j,-2*t2s[j]^13 -3* t2s[j]^12-t2s[j]^11+9* t2s[j]^9+12* t2s[j
]^8+15* t2s[j]^7+20* t2s[j]^6+10* t2s[j]^5+12* t2s[j]^4+ t2s[j]^3-2*t2s[j
]-3);

53

54 \\ vols
55 vol=[-R(z1vec [1],0,0)+R(z2vec[1],-2,-3),-R(z1vec [2],0,1)+R(z2vec [2],0,0) ,-

R(z1vec[3],-1,-1)+R(z2vec [3],0,1) ,-R(z1vec [4],0,0)+R(z2vec [4],1,1) ,-R(
z1vec [5],0,-1)+R(z2vec[5],-1,-2),-R(z1vec [6],0,0)+R(z2vec [6],-1,-2),-R(
z1vec [7],0,0)+R(z2vec [7],1,2)];

56 \\[99.254 , -6.7857, -0.11620, 9.2837 , 41.608 , 44.346 - 1.3985*I, 44.346 +
1.3985*I]

57

58 \\ the shifted volumes
59 V = vol -4*Pi^2*[2,0,-1,0,1,1,1]
60 \\[20.296 , -6.7856, 39.362 , 9.2837 , 2.1292 , 4.8678 - 1.3985*I, 4.8678 +

1.3985*I]
61

62 \\1-loop
63 delta=vector(7,j,[-74,-66,133,-74,31,15,-12]* vectorv(7,l,xi[j]^(l-1)));
64

65 /* ********************************************** */
66 \\ formula based WRT
67 /* ********************************************** */
68 \\WRT invariant for 4_1(-1,2) see Hecke ..., Lovejoy , Hikami
69 Wex(q,m,n,N)=sum(k=0,N,(-1)^k*q^(-k*(k+1)/2+m*k)*qpoch(q,q,2*k+1)*sum(ell

=0,k,q^(ell*(ell+1)+n*ell)/qpoch(q,q,ell)/qpoch(q,q,k-ell)));
70

71 \\fast version
72 {W(q,m,n,N)=
73 local(q2 ,t,qbc ,qbs ,qp,qk ,q2k ,tqt ,mo,temp);
74 q2=q^2;t=1-q;qbc=1; qbs =0;qp=1-q;qk=1;q2k=1; tqt =1;mo=1;
75 for(k=1,N,temp=qbc;mo=(-1)*mo;qk=q*qk;q2k=(q2)*q2k;tqt=qk*tqt;qbc =(1+q-qk+

q2k*q^n)*qbc -(q-qk)*qbs;qbs=temp;qp=qp*(1+qk)*(1-q*q2k);t=t+mo*qk^m*qp*
qbc/tqt);

76 t};
77

78 \\check they agree
79 W(exp(h+O(h^20)) ,7,-11,60)-Wex(exp(h+O(h^20)) ,7,-11,60)
80

81 /* ********************************************** */
82 \\ numerical asymptotics
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83 /* ********************************************** */
84 huh=vector (2000);
85 for(k=500 ,1020 , huh[k]=W(E(-1/k) ,0,0,k+10);print([k,gettime ()]))
86

87 asymposc(huh ,500,2,E(0.1))
88 \\ = [0.94313 + 0.33243*I 0.50001 + 1.0554 E-5*I 0.30443 - 0.30448*I]
89

90 asymposc(huh ,500,2,E(0.3))
91 \\ = [0.093109 + 0.99566*I 0.49999 + 3.3768 E-6*I -0.26688 + 0.26690*I]
92

93 asymposc(huh ,500,2,E(0.4))
94 \\ = [ -0.99606 - 0.088638*I 0.50000 + 9.4365 E-6*I 0.20780 - 0.20783*I]
95

96 asymposc(huh ,500,2,E(0.7))
97 \\ = [0.47135 - 0.88194*I 0.50000 + 1.2317 E-5*I -0.19891 + 0.19894*I]
98

99 exp(-vol /2/Pi/I)
100 \\ = [ -0.99606 - 0.088638*I, 0.47135 - 0.88194*I, 0.99983 - 0.018493*I,

0.093109 + 0.99566*I, 0.94313 + 0.33243*I, 0.89275 + 0.87392*I, 0.57201
+ 0.55994*I]

101

102 hah=vector (2000);
103 for(k=1000 ,1020 , hah[k]=W(E(-1/(k+1/2)) ,0,0,2*k+10))
104

105 asymp(hah ,1000 ,18)
106 \\ = [0.89275 + 0.87392*I, 0.50000 - 7.1669 E-33*I, -0.41564 - 1.0444*I]
107

108 /* ********************************************** */
109 \\ reading in data
110 /* ********************************************** */
111

112 A=vector (200,k,vector(7,l,0));
113 \r 4112 data
114 \r data_41_12surgery
115

116 HH=114 \\ current number of a(k,j)
117

118 am=matrix(HH ,7,k,j,( delta[j])^( -1/2)*A[k]* vectorv(7,l,xi[j]^(l-1))/delta[j
]^(3*k)/DD(k));

119 a(k,j)=if(k,am[k,j],(delta[j])^( -1/2));
120

121 hah1=vector (2000);
122 for(k=1000 ,1020 , hah1[k]=( hah[k]/exp(-vol [6]/2/ Pi/I*(k+1/2))/sqrt(k+1/2)*

sqrt(delta [6])/E(1/8) /2-1) /(2*Pi*I/(k+1/2)))
123

124 lim(hah1 ,1000 ,18)
125 \\ = 0.11069 - 0.025945*I
126
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127 -A[1]* vectorv(7,l,xi [6]^(l-1))/delta [6]^(3*1)/DD(1)
128 \\ = 0.11069 - 0.025945*I
129

130 /* ********************************************** */
131 \\zhat
132 /* ********************************************** */
133

134 \\Zhat invariant for 4_1(-1,2) see Two -Var..., Gukov , Manolescu for
numerics

135 Zhatex(q,m,n,N)=q^(-m-n)*sum(ell=0,N,(-1)^ell*q^(ell*(ell+1)/2-n*ell)*
qpoch(q,q,ell)*sum(k=0,ell ,(-1)^k*q^(3*k*(k+1)/2-(m+1)*k)/qpoch(q,q,ell
-k)/qpoch(q,q,2*k)));

136

137 \\quick computation
138 {Zhat(q,m,n,N)=
139 local(q2 ,t,qbc ,qbs1 ,qbs2 ,qbs3 ,qp ,qell ,tqt ,temp);
140 t=q^(-n-m);qbc=q^(-m);qbs1 =0; qbs2 =0; qbs3 =0;qp=1; qell =1; tqt =1;mo=1;
141 for(ell=1,N,temp=qbc;qell=qell*q;tqt=tqt*qell;qbc=-((-qell ^(-4)*q^(-4)-

qell ^(-4)*q^(-3)-qell ^(-4)*q^(-2)-qell ^(-4)*q^(-1)+q^(-5)*qell ^(-2)+2*q
^(-4)*qell ^(-2)+q^(-3)*qell ^(-2)+q^(-5-m)*qell ^(-1))/(qell ^(-4)*q^(-4)-
q^(-5)*qell ^(-2)-q^(-4)*qell ^(-2)-q^(-6-m)*qell ^(-1)+q^(-5)+q^(-m-6)*
qell ^(-1))*qbc+(qell ^(-4)*q^(-3)+qell ^(-4)*q^(-2)+2* qell ^(-4)*q^(-1)+
qell ^(-4)-q^(-4)*qell ^(-2)-q^(-3)*qell ^(-2)-q^(-5-m)*qell ^(-1)+qell
^(-4)*q^(+1))/(qell ^(-4)*q^(-4)-q^(-5)*qell ^(-2)-q^(-4)*qell ^(-2)-q
^(-6-m)*qell ^(-1)+q^(-5)+q^(-m-6)*qell ^(-1))*qbs1 -(qell ^(-4)*q^(-1)+
qell ^(-4)+qell ^(-4)*q^(+1)+qell ^(-4)*q^(+2))/(qell ^(-4)*q^(-4)-q^(-5)*
qell ^(-2)-q^(-4)*qell ^(-2)-q^(-6-m)*qell ^(-1)+q^(-5)+q^(-m-6)*qell ^(-1)
)*qbs2+qell ^(-4)*q^(+2)/(qell ^(-4)*q^(-4)-q^(-5)*qell ^(-2)-q^(-4)*qell
^(-2)-q^(-6-m)*qell ^(-1)+q^(-5)+q^(-m-6)*qell ^(-1))*qbs3);qbs3=qbs2;
qbs2=qbs1;qbs1=temp;qp=qp*(1-qell);t=t+(-1)^ell/qell^n/q^(n)*qp*qbc*tqt
);

142 t};
143

144 \\ checks
145 Zhat(q+O(q^50) ,0,0,50)-Zhatex(q+O(q^50) ,0,0,50)
146 Zhat(q+O(q^50) ,7,-11,50)-Zhatex(q+O(q^50) ,7,-11,50)
147 Zhat(q+O(q^50) ,2,3,50)-Zhatex(q+O(q^50) ,2,3,50)
148

149 heh=vector (2000);
150 for(k=1000 ,1020 , heh[k]=Zhat(E(-1/(I*k)) ,0,0,2*k);print ([k,gettime ()]))
151

152 asymp(heh ,1000 ,18)
153 \\ = [1.0187 , 0.50000 , 0.10958]
154

155 exp(-vol [3]/2/ Pi/I*I)
156 \\ = 1.0187
157

158 heh1=vector (2000);
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159 for(k=1000 ,1020 , heh1[k]=( heh[k]/exp(-vol [3]/2/ Pi/I*I*k)/sqrt(I*k)*sqrt(
delta [3])/E(1/8) -1)/(2*Pi*I/(I*k)))

160

161 lim(heh1 ,1000 ,15)
162 \\ = 0.11778 - 3.2040 E -1959*I
163

164 -A[1]* vectorv(7,l,xi [3]^(l-1))/delta [3]^(3*1)/DD(1)
165 \\ = 0.11778 + 0.E -2004*I
166

167 /* ********************************************** */
168 \\ asymptotics series
169 /* ********************************************** */
170 Phi0=W(exp(x) ,0,0,201);
171 Phi1=sum(k=0,HH ,a(k,1)*x^k)+O(x^(HH+1));
172 Phi2=sum(k=0,HH ,a(k,2)*x^k)+O(x^(HH+1));
173 Phi3=sum(k=0,HH ,a(k,3)*x^k)+O(x^(HH+1));
174 Phi4=sum(k=0,HH ,a(k,4)*x^k)+O(x^(HH+1));
175 Phi5=sum(k=0,HH ,a(k,5)*x^k)+O(x^(HH+1));
176 Phi6=sum(k=0,HH ,a(k,6)*x^k)+O(x^(HH+1));
177 Phi7=sum(k=0,HH ,a(k,7)*x^k)+O(x^(HH+1));
178

179 {B=[abs(V[1]-V[6]),abs(V[2]-V[6]),abs(V[3]-V[6]),abs(V[4]-V[6]),
180 abs(V[5]-V[6]),abs(V[6]-V[5]),abs(V[7]-V[5])]} \\ asympt growth rate of a(

k,j)/k!
181

182 {BB=[(V[1]-V[6]) ,(V[2]-V[6]) ,(V[3]-V[6]) ,(V[4]-V[6]),
183 (V[5]-V[6]) ,(V[6]-V[5]) ,(V[7]-V[5])]}
184

185 a0(k)=polcoeff(Phi0 ,k);
186

187 /* ********************************************** */
188 \\ asymptotics of the coefficients
189 /* ********************************************** */
190

191 \\ optimal truncation asymp of coeffs a(k,j)
192 ako(k,j,jj)=floor(k*B[j]/( abs(V[j]-V[jj])+B[j]))
193

194 \\ optimal truncated asymp of coeffs a(k,j)
195 {aa(k,j,jj ,H=min(HH,ako(k,j,jj)))=
196 sum(l=0,H,(k-1-l)!*a(l,jj)/(V[j]-V[jj])^(k-l))/2/Pi/I}
197

198 {aaa(k,j,jj,H=HH)=
199 sum(l=0,H,(k-1-l)!*a(l,jj)/(-V[j]+V[jj])^(k-l))/2/Pi/I}
200

201 {err(k,j,jj,tt=0)=H=min(HH ,ako(k,j,jj));
202 (k-1-H)!*a(H,jj)/(-V[j]+V[jj]+tt*Pi^2)^(k-H)/2/Pi/I}
203

204 a(80,1) \\ = 0.E-1801 - 5.2055 E20*I
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205 a(80,1)-aa(80,1,6,20)-aa(80,1,7,20) \\ = 0.E -1809 - 3.8570 E14*I
206

207 a(80,2) \\ = 0.E-1813 + 3.9225 E30*I
208 a(80,2)-aa(80,2,6,20)-aa(80,2,7,20) \\ = 0.E -1820 - 1.1333 E21*I
209

210 a(110 ,3) \\ = 0.E -1997 + 4.0035 E5*I
211 a(110 ,3)-aa(110,3,6 ,13)-aa(110 ,3 ,7 ,13) \\ = 0.E -1978 + 5.8422*I
212

213 a(80,4) \\ = 0.E-1750 - 6.3552 E62*I
214 a(80,4)-aa(80,4,6,20)-aa(80,4,7,20) \\ = 0.E -1767 - 1.2429 E45*I
215

216 a(80,5) \\ = 0.E-1722 - 1.3417 E77*I
217 a(80,5)-aa(80,5,6,20)-aa(80,5,7,20) \\ = 0.E -1735 + 8.3409 E55*I
218

219 a(80,6) \\ = 5.6878 E76 + 4.3293 E75*I
220 a(80,6)+aa(80,6,5) \\ = 2.4379 E62 + 1.6582 E62*I
221 a(80,6)+aa(80,6,5)+aa(80,6,4) \\ = -4.9759 E51 + 1.0774 E51*I
222 err(80,6,5) \\ = -9.9868 E51 - 3.6041 E50*I
223 aa(80,6,7) \\ = -2.0196 E78 - 1.3147 E80*I
224

225 a(80,7) \\ = 5.6878 E76 - 4.3293 E75*I
226 a(80,7)+aa(80,7,5) \\ = 2.4379 E62 - 1.6582 E62*I
227 a(80,7)+aa(80,7,5)+aa(80,7,4) \\ = -4.9759 E51 - 1.0774 E51*I
228

229 V0=vol -4*Pi^2*[3,0,0,0,1,1,1];
230

231 \\ optimal truncation asymp of coeffs a0per(k)
232 a0ko(k,j)=floor(k*abs(V0[3])/(abs(V0[j])+abs(V0[3])))
233

234 \\ optimal truncated asymp of coeffs a0(k)
235 {a0a(k,j,H=min(HH,a0ko(k,j)))=1/(-V0[j])^(k)*sum(l=0,H,gamma(k-l+1/2)*(-

sqrt (-1/2/Pi))*a(l,j)*(-V0[j])^(l-1/2))}
236

237 a0(200) *1. \\ = -6.4904 E559
238 a0(200) -a0a (200 ,3 ,110) \\ = 1.1057 E232 + 2.9568 E -1437*I
239 a0(200) -a0a (200 ,3 ,110)+a0a (200 ,6)-a0a (200 ,7) \\ = 3.5233 E224 + 2.9568 E

-1437*I
240

241 /* ********************************************** */
242 \\one loop invariants at roots of unity
243 /* ********************************************** */
244 \p200
245 default(format ,"g.5")
246

247 X1=vector(7,j,[-3, 11, 20, -15, 6, -2, -4]* vectorv(7,k,xi[j]^(k-1)))
248 X2=vector(7,j,[-9, 19, 76, -52, 20, -4, -13]* vectorv(7,k,xi[j]^(k-1)))
249 x1(j,k)=log(X1[j])/2/Pi/I+k
250 x2(j,k)=log(X2[j])/2/Pi/I+k
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251 Delta=vector(7,j,[-257, 806, 947, -749, 331, -133, -213]* vectorv(7,k,xi[j
]^(k-1)))

252 Dq(x)=local(a,c);c=denominator(x);a=x*c;sqrt(-I*c/abs(c))*prod(ell=1,abs(c
) -1,(1-E(ell*a/c))^(1/2 -ell/abs(c)));

253

254 {const(al ,j,m,n,thfix =0)=local(c,q);c=denominator(al);q=E(al);
255 sum(k=0,c-1,sum(ell=0,c-1,q^(k^2+k*ell -m*k-n*ell -m)*X1[j]^((2*k+ell -m)/c)*

X2[j]^((k-n)/c)/prod(i=0,c-1,((1-q^(i+1+ell -k)*X1[j]^(-1/c)*X2[j]^(1/c)
)*E(thfix))^((i+1+ell -k)/c -1/2)/E(thfix *((i+1+ell -k)/c -1/2)))/prod(i=0,
c-1,((1-q^(i+1+ell)*X2[j]^(1/c))*E(thfix))^((i+1+ ell)/c-1/2)/E(thfix *((
i+1+ell)/c -1/2)))/prod(i=0,c-1,((1-q^(i+1+2*k)*X1[j]^(2/c))*E(thfix))
^((i+1+2*k)/c-1/2)/E(thfix *((i+1+2*k)/c-1/2)))))*sqrt((1-X1[j]^2) ^2*(1-
X2[j])*(1-X2[j]/X1[j])/(Delta[j]))/I/c/Dq(al)}

256

257 {constterm(k,al,j,m,n,thfix =0)=local(c,q);c=denominator(al);q=E(al);
258 sum(ell=0,c-1,q^(k^2+k*ell -m*k-n*ell -m)*X1[j]^((2*k+ell -m)/c)*X2[j]^((k-n)

/c)/prod(i=0,c-1,((1-q^(i+1+ell -k)*X1[j]^(-1/c)*X2[j]^(1/c))*E(thfix))
^((i+1+ell -k)/c-1/2)/E(thfix *((i+1+ell -k)/c -1/2)))/prod(i=0,c-1,((1-q^(
i+1+ell)*X2[j]^(1/c))*E(thfix))^((i+1+ ell)/c-1/2)/E(thfix *((i+1+ell)/c
-1/2)))/prod(i=0,c-1,((1-q^(i+1+2*k)*X1[j]^(2/c))*E(thfix))^((i+1+2*k)/
c-1/2)/E(thfix *((i+1+2*k)/c-1/2))))*sqrt((1-X1[j]^2) ^2*(1 -X2[j])*(1-X2[
j]/X1[j])/( Delta[j]))/I/c/Dq(al)}

259

260 {consttermf(k,al,j,m,n,thfix =0)=local(c,q,tl,sl);c=denominator(al);q=E(al)
;

261 tl=q^(k^2-m*k-m)*X1[j]^((2*k-m)/c)*X2[j]^((k-n)/c)/prod(i=0,c-1,((1-q^(i
+1-k)*X1[j]^(-1/c)*X2[j]^(1/c))*E(thfix))^((i+1-k)/c-1/2)/E(thfix *((i
+1-k)/c-1/2)))/prod(i=0,c-1,((1-q^(i+1)*X2[j]^(1/c))*E(thfix))^((i+1)/c
-1/2)/E(thfix *((i+1)/c-1/2)))/prod(i=0,c-1,((1-q^(i+1+2*k)*X1[j]^(2/c))
*E(thfix))^((i+1+2*k)/c-1/2)/E(thfix *((i+1+2*k)/c -1/2)))*sqrt((1-X1[j
]^2) ^2*(1 -X2[j])*(1-X2[j]/X1[j])/(Delta[j]))/I/c/Dq(al);

262 sl=tl;
263 for(ell=1,c-1,tl=q^(k-n)*X1[j]^(1/c)*tl/(1-q^(ell -k)*X1[j]^(-1/c)*X2[j

]^(1/c))/(1-q^(ell)*X2[j]^(1/c));sl=sl+tl);
264 sl}
265

266 {constf(al ,j,m,thfix =0)=local(c,q,t0,t1,s,temp0);c=denominator(al);q=E(al)
;

267 t0=consttermf (0,al ,j,0,-1,thfix);
268 t1=consttermf (1,al ,j,0,-1,thfix);
269 s=t0/q^m+t1/q^(2*m);
270 qk=1;
271 for(k=2,c-1,qk=qk/q;temp0=t1;t1=(-(qk/X1[j]^(1/c))^2*t0 -(q*(qk/X1[j]^(1/c)

) + (qk/X1[j]^(1/c))^3 - (qk/X1[j]^(1/c))^2 + (qk/X1[j]^(1/c)))*(1+( qk/
X1[j]^(1/c)))*(1-q*(qk/X1[j]^(1/c))^2)*temp0)/(q^2*(1+( qk/X1[j]^(1/c)))
*(1-q*(qk/X1[j]^(1/c))^2)*(1-(qk/X1[j]^(1/c))^2/q^2)*(1-(qk/X1[j]^(1/c)
)^2/q));t0=temp0;s=s+t1*(qk/q^2)^m);

272 s/X1[j]^(m/c)/if(c==1,2,1)}
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273

274 gettime ()
275 const (1/11,6,3,-1,-0.001)
276 gettime ()
277 constf (1/11 ,6 ,3 , -0.001)
278 gettime ()
279

280 heh=vector (2000);
281 for(k=200,210,heh[k]= constf (1/k,6 ,0 ,-0.001);print([k,gettime ()]))
282

283 heh0=vector (2000);
284 for(k=200,205, heh0[k]=(heh[k]/E(V[7]/(2* Pi*I)^2*k)/constf (11,6,0 ,-0.001)/

constf (11,7,0 ,-0.001)/E(V[6]/(2* Pi*I)^2/k)/I-1) /(2*Pi*I/k))
285

286 lim(heh0 ,200 ,4)
287 a(1,7)*sqrt(delta [7])
288

289 heeh=vector (2000);
290 for(k=200,205, heeh[k]= constf (1/k,2 ,0 ,-0.001);print([k,gettime ()]))
291

292 heeh0=vector (2000);
293 for(k=200,210, heeh0[k]=( heeh[k]/E(V[7]/(2* Pi*I)^2*k)/constf (11,2,0 ,-0.001)

/constf (11 ,7,0, -0.001)/E(V[2]/(2* Pi*I)^2/k)/I-1) /(2*Pi*I/k))
294

295 lim(heeh0 ,200 ,4)
296 a(1,7)*sqrt(delta [7])
297

298 heeeh=vector (2000);
299 for(k=200,205, heeeh[k]= constf (1/(k+1/2) ,2,0,-0.001);print ([k,gettime ()]))
300

301 heeeh0=vector (2000);
302 for(k=200,210, heeeh0[k]=( heeeh[k]/E(V[7]/(2* Pi*I)^2*(k+1/2))/constf(k

+1/2 ,2 ,0 , -0.001)/constf (1,7,0,-0.001)/E(V[2]/(2* Pi*I)^2/(2*k+1) /2)/I-1)
/(2*Pi*I/k))

303

304 lim(heeeh0 ,200 ,4)
305 a(1,7)*sqrt(delta [7])
306

307 heeeeh=vector (2000);
308 for(k=200,204, heeeeh[k]= constf (1/(k+1/5) ,2,0,-0.001);print ([k,gettime ()]))
309

310 heeeeh0=vector (2000);
311 for(k=200,204, heeeeh0[k]=( heeeeh[k]/E(V[7]/(2* Pi*I)^2*(k+1/5))/constf(-(k

+1/5) ,2,0,-0.001)/constf (1,7,0,-0.001)/E(V[2]/(2* Pi*I)^2/(5*k+1)/5)/I
-1) /(2*Pi*I/k))

312

313 lim(heeeeh0 ,200 ,3)
314 a(1,7)*sqrt(delta [7])
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315

316 heeeeeh=vector (2000);
317 for(k=200,204, heeeeeh[k]= constf (1/(k+1/5) ,2,1,-0.001);print ([k,gettime ()])

)
318

319 heeeeeh0=vector (2000);
320 for(k=200,204, heeeeeh0[k]=( heeeeeh[k]/E(V[7]/(2* Pi*I)^2*(k+1/5))/constf(-(

k+1/5) ,2,0,-0.001)/constf (1,7,1,-0.001)/E(V[2]/(2* Pi*I)^2/(5*k+1)/5)/I)
)

321

322 lim(heeeeeh0 ,200 ,3)
323

324 constmat(al ,m,n,thfix =0)=matrix(7,7,i,j,const(al,j,m+i-1,-1,thfix))
325

326 constmatf7x7(al,m,thfix =0)=matrix(7,7,i,j,constf(al,j,m+i-1,thfix))
327

328 gettime ();constmatf (1/3 ,0 , -0.001);gettime ()
329

330 /* ********************************************** */
331 \\ quadratic relations
332 /* ********************************************** */
333

334 {P(x,q)=[
335 (x^4*q^(10) *(2*q^4 + 4*q^3 + 6*q^2 + 4*q + 2) + 2*x^3*q^(9) + x^2*q^(3)

*(2*q^6 + 4*q^5 + 4*q^4 + 6*q^3 + 4*q^2 + 4*q + 2)+2)/(x^7*q^(21)),
336 (-2*x^4*q^(10) +x^2*q^(3)*(- 2*q^4 - 4*q^3 - 4*q^2 - 4*q - 2) - 2)/(x^6*q

^(15)),
337 (x^2*q^(3) *(2*q^2 + 4*q + 2) + 2)/(x^5*q^(10)),
338 (-2*x^2*q^(3) - 2)/(x^4*q^(6)),
339 2/(x^3*q^(3)),
340 -2/(x^2*q^(1)),
341 0;
342 (-2*x^4*q^(14) + x^2*q^(5)*(- 2*q^4 - 4*q^3 - 4*q^2 - 4*q - 2) - 2)/(x^6*q

^(21)),
343 (x^2*q^(5) *(2*q^2 + 4*q + 2) + 2)/(x^5*q^(15)),
344 (-2*x^2*q^(5) - 2)/(x^4*q^(10)),
345 2/(x^3*q^(6)),
346 -2/(x^2*q^(3)),
347 0,
348 -2/(x^2*q^(1));
349 (x^2*q^(7) *(2*q^2 + 4*q + 2) + 2)/(x^5*q^(20)),
350 (-2*x^2*q^(7) - 2)/(x^4*q^(14)),
351 2/(x^3*q^(9)),
352 -2/(x^2*q^(5)),
353 0,
354 -2/(x^2*q^(3)),
355 2/(x^3*q^(3));
356 (-2*x^2*q^(9) - 2)/(x^4*q^(18)),
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357 2/(x^3*q^(12)),
358 -2/(x^2*q^(7)),
359 0,
360 -2/(x^2*q^(5)),
361 2/(x^3*q^(6)),
362 (-2*x^2*q^(3) - 2)/(x^4*q^(6));
363 2/(x^3*q^(15)),
364 -2/(x^2*q^(9)),
365 0,
366 -2/(x^2*q^(7)),
367 2/(x^3*q^(9)),
368 (-2*x^2*q^(5) - 2)/(x^4*q^(10)),
369 (x^2*q^(3) *(2*q^2 + 4*q + 2) + 2*x*q^(2) + 2)/(x^5*q^(10));
370 -2/(x^2*q^(11)),
371 0,
372 -2/(x^2*q^(9)),
373 2/(x^3*q^(12)),
374 (-2*x^2*q^(7) - 2)/(x^4*q^(14)),
375 (x^2*q^(5) *(2*q^2 + 4*q + 2) + 2*x*q^(3) + 2)/(x^5*q^(15)),
376 (-2*x^4*q^(10) +x^2*q^(3)*(- 2*q^4 - 4*q^3 - 4*q^2 - 4*q - 2) +x*q^(2)*(-

2*q - 2) - 2)/(x^6*q^(15));
377 0,
378 -2/(x^2*q^(11)),
379 2/(x^3*q^(15)),
380 (-2*x^2*q^(9) - 2)/(x^4*q^(18)),
381 (x^2*q^(7) *(2*q^2 + 4*q + 2) + 2*x*q^(4) + 2)/(x^5*q^(20)),
382 (-2*x^4*q^(14) + x^2*q^(5)*(- 2*q^4 - 4*q^3 - 4*q^2 - 4*q - 2) +x*q^(3)*(-

2*q - 2) - 2)/(x^6*q^(21)),
383 (x^4*q^(10) *(2*q^4 + 4*q^3 + 6*q^2 + 4*q + 2) + x^3*q^(7) *(2*q^4 + 2*q^3 +

2*q^2 + 2*q + 2) + x^2*q^(3) *(2*q^6 + 4*q^5 + 4*q^4 + 6*q^3 + 4*q^2 +
4*q + 2) + x*q^(2) *(2*q^2 + 2*q + 2) + 2)/(x^7*q^(21))]}

384

385 for(k=1,10,print(round(constmatf7x7 (-1/k,-6,-0.001)~*P(1,E(1/k))^(-1)*
constmatf7x7 (1/k,0 , -0.001) *2*I*10^100) /10^100))

386

387 /*
388 for(k=1,10,print(round(constmat (-1/k,-6,-1,-0.001)~*P(1,E(1/k))^(-1)*

constmat (1/k,0,-1,-0.001)*2*I*10^100) /10^100))
389 */
390

391 /* ********************************************** */
392 \\vols
393 /* ********************************************** */
394

395 VVV(j,k)=-dilog(X2[j])-dilog(X1[j]^2)-dilog(X1[j]^( -1)*X2[j]) -2*Pi*I*x2(j,
k)*log(1-X2[j]) -2*(2*Pi*I)*x1(j,k)*log(1-X1[j]^2) -2*Pi*I*(x2(j,k)-x1(j,
k))*log(1-X1[j]^(-1)*X2[j])+(2*Pi*I)^2*x1(j,k)^2+(2* Pi*I)^2*x1(j,k)*x2(
j,k)
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396

397 VV=vector(7,j,-VVV(j,0)-Pi^2/6)
398

399 /* ********************************************** */
400 \\ cocycle
401 /* ********************************************** */
402

403 constmatf(al,m,thfix =0)=matrix(8,8,i,j,if(j==1,W(E(al),m+i-1,0, denominator
(al)/2+10) ,constf(al,j-1,m+i-1,thfix)))

404

405 {SI8x8(q)=[
406 -1/(q^5 - q^4) ,((-q - 2)/(q^3 - q^2)) ,((q^3 - 2*q^2 + q + 1)/(q^3 - q^2))

,((q^3 + q^2 + 2*q + 1)/(q - 1)) ,((-q^4 - 2*q)/(q - 1)) ,((-q^6 - q^5 -
q^3)/(q - 1)) ,((q^6 + q^4)/(q - 1)),q^8/(q - 1);

407 -1/(q^5 - q^4) ,((-q - 2)/(q^3 - q^2)) ,((-q^2 + q + 1)/(q^3 - q^2)) ,((q^2 +
2*q + 2)/(q - 1)) ,((-q^3 - 2*q)/(q - 1)) ,((-q^5 - q^4 - q^3)/(q - 1))

,((q^5 + q^3)/(q - 1)),q^7/(q - 1);
408 -1/(q^4 - q^3) ,((-q^2 - q - 1)/(q^3 - q^2)) ,1/(q^2 - q) ,((q^3 + 2*q^2 + q

+ 1)/(q - 1)) ,((-q^4 - 2*q^2)/(q - 1)) ,((-q^6 - q^5 - q^4)/(q - 1)) ,((q
^6 + q^4)/(q - 1)),q^8/(q - 1);

409 0,1/q^3,1/q,((-q - 1)/q) ,1,q^2,0,0;
410 -1/(q^5 - q^4) ,((-2*q - 1)/(q^3 - q^2)) ,((-q^3 + q + 1)/(q^3 - q^2)) ,((q^3

+ q^2 + 3*q)/(q - 1)) ,((-2*q^2 - q)/(q - 1)) ,((-q^6 - q^5 - q^4 - q^3
+ q^2)/(q - 1)) ,((q^5 + q^4)/(q - 1)),q^8/(q - 1);

411 -1/(q^5 - q^4) ,((-2*q - 1)/(q^3 - q^2)) ,((-q^3 - q^2 + 2*q + 1)/(q^3 - q
^2)) ,((q^3 + q^2 + 3*q)/(q - 1)) ,((-q^2 - 2*q)/(q - 1)) ,((-q^6 - q^5 -
q^4 - q^3 + q^2)/(q - 1)) ,((q^5 + q^4)/(q - 1)),q^8/(q - 1);

412 0,0,0,1,0,0,0,0;
413 -1/(q^5 - q^4) ,((-2*q - 1)/(q^3 - q^2)) ,((-q^3 + q + 1)/(q^3 - q^2)) ,((q^3

+ q^2 + 3*q)/(q - 1)) ,((-q^2 - 2*q)/(q - 1)) ,((-q^6 - q^5 - q^4 - q^3
+ q^2)/(q - 1)) ,((q^5 + q^4)/(q - 1)),q^8/(q - 1)]}

414

415 cocycle(al,m,n,thfix)=[ matrix(7,7,i,j,const(-1/al,j,m+i-1,-1,thfix)),
matrix(7,7,i,j,const(al,j,n+i-1,-1,thfix))]

416

417 /* cocyclepicc=vector (500);
418 for(k=2,100, cocyclepicc[k]=[ constmatf(k/101 ,0 , -0.0001),constmatf ( -101/k

,-3 ,-0.0001)];print([k,gettime ()]))*/
419

420 /* ********************************************** */
421 \\pade and borel
422 /* ********************************************** */
423

424 \\borel of a = series in x
425 borel(a) = serconvol(a,exp(x));
426

427 \\pade of a = series in x
428 pade(a,N) = bestapprPade(a+O(x^N));
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429

430 \\borel -pade resummation at tau of a series a with N coeffs
431 {resum(tau ,a,N)= local(pb); pb=pade(borel(a),N);
432 intnum(xi=0,[+oo ,1],exp(-xi)*subst(pb ,x,xi*tau))};
433

434 /* ********************************************** */
435 \\ the resummed phi series
436 /* ********************************************** */
437

438 {rphi0(tau ,N=200)=resum (2*Pi*I/tau ,Phi0*1.,N);}
439 {rphi1(tau ,N=HH)=E(3/8)*sqrt(tau)*E(V[1]* tau /(2*Pi*I)^2)*resum (2*Pi*I/tau ,

Phi1 ,N);}
440 {rphi2(tau ,N=HH)=E( -1/8)*sqrt(tau)*E(V[2]* tau /(2*Pi*I)^2)*resum (2*Pi*I/tau

,Phi2 ,N);}
441 {rphi3(tau ,N=HH)=E(3/8)*sqrt(tau)*E(V[3]* tau /(2*Pi*I)^2)*resum (2*Pi*I/tau ,

Phi3 ,N);}
442 {rphi4(tau ,N=HH)=E( -1/8)*sqrt(tau)*E(V[4]* tau /(2*Pi*I)^2)*resum (2*Pi*I/tau

,Phi4 ,N);}
443 {rphi5(tau ,N=HH)=E(3/8)*sqrt(tau)*E(V[5]* tau /(2*Pi*I)^2)*resum (2*Pi*I/tau ,

Phi5 ,N);}
444 {rphi6(tau ,N=HH)=E(3/8)*sqrt(tau)*E(V[6]* tau /(2*Pi*I)^2)*resum (2*Pi*I/tau ,

Phi6 ,N);}
445 {rphi7(tau ,N=HH)=E(3/8)*sqrt(tau)*E(V[7]* tau /(2*Pi*I)^2)*resum (2*Pi*I/tau ,

Phi7 ,N);}
446

447 phivec8(tau)=[rphi0(tau),rphi1(tau),rphi2(tau),rphi3(tau),rphi4(tau),rphi5
(tau),rphi6(tau),rphi7(tau)]

448

449 /* ********************************************** */
450 \\ q series for 4_1(1,2)
451 /* ********************************************** */
452

453 {Zhatf1(q,m,N,ss=1)=
454 local(t0 ,t1,s,temp0 ,qk,qj);
455 t0=(-1+q)*(ss+1);t1=1;qj=1;tj=1;
456 for(j=1,N,qj=qj*q;tj=q*tj/(1-qj)^2;t1=t1+tj);
457 t1=qpochinfty(q,q,N,ss ,1) ^2*t1;
458 s=t1/q^m;qk=q;
459 for(k=1,N,qk=qk/q;temp0=t1;t1=-(qk^2*t0+(q*qk + qk^3 - qk^2 + qk)*(1+qk)

*(1-q*qk^2)*temp0)/(q^2*(1+ qk)*(1-q*qk^2)*(1-qk^2/q^2)*(1-qk^2/q));t0=
temp0;s=s+(qk/q^2)^m*t1);

460 s}
461

462 {Zhatf2(q,m,N,ss=1)=
463 local(t0 ,t1,tj,tjn ,tjc ,s,temp0 ,qk,qj);
464 t0=0;qj=1;tj=1;tjc = -1/2+2*ss*Gf(q^ss ,1,N);tjn =0;t1=tj*(tjc -2*tjn);
465 for(j=1,N,qj=qj*q;tj=q*tj/(1-qj)^2;tjn=tjn+qj/(1-qj);t1=t1+tj*(tjc -2* tjn))

;
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466 t1=qpochinfty(q,q,N,ss ,1) ^2*t1;
467 s=t1/q^m;
468 qk=q;
469 for(k=1,N,qk=qk/q;temp0=t1;t1=-(qk^2*t0+(q*qk + qk^3 - qk^2 + qk)*(1+qk)

*(1-q*qk^2)*temp0)/(q^2*(1+ qk)*(1-q*qk^2)*(1-qk^2/q^2)*(1-qk^2/q));t0=
temp0;s=s+(qk/q^2)^m*t1);

470 s}
471

472 {Zhatf3(q,m,N,ss=1)=
473 local(t0 ,t1,tj,tjn ,tjc1 ,tjc2 ,tG1 ,tG2 ,s,temp0 ,qk ,qj);
474 t0=-2*(1-q);qj=1;tj=1; tG1=ss*Gf(q^ss ,1,N);tG2=ss*Gf(q^ss ,2,N);tjc1 =(1/2 -2*

tG1);tjc2 =(-2*m-4*tG1);tjn =0;
475 t1=tj*(( tjc1 +2*tjn)*tjc2 /2+2* tG2);
476 for(j=1,N,qj=qj*q;tj=q*tj/(1-qj)^2;tjn=tjn+qj/(1-qj);tjc2=tjc2 +2;t1=t1+tj

*(( tjc1 +2* tjn)*tjc2 /2+2* tG2));
477 t1=qpochinfty(q,q,N,ss ,1) ^2*t1;s=t1/q^m;qk=q;
478 for(k=1,N,qk=qk/q;temp0=t1;t1=-(qk^2*t0+(q*qk + qk^3 - qk^2 + qk)*(1+qk)

*(1-q*qk^2)*temp0)/(q^2*(1+ qk)*(1-q*qk^2)*(1-qk^2/q^2)*(1-qk^2/q));t0=
temp0;s=s+(qk/q^2)^m*t1);

479 s}
480

481 {Zhatf4(q2 ,m,N,ss=1)=
482 local(t0 ,t1,t0j ,t1j ,s,temp0 ,qk ,qkj ,qpc);
483 qpc=qpochinfty(q2^2,q2^2,N,ss ,1)*qpochinfty(q2^3,q2^2,N,ss);
484 t0j=q2^(2)/qpoch(q2^2,q2^2,1);t1j=q2^(12)/qpoch(q2^3,q2^2,1)/qpoch(q2^2,q2

^2,3);t0=t0j;t1=t1j;qj=1;
485 for(j=1,N,qj=qj*q2^2;t0j=t0j*q2^3/(1 -qj)/(1-qj*q2);t1j=t1j*q2^5/(1 -qj)/(1-

qj*q2^3);t0=t0+t0j;t1=t1+t1j);
486 t0=qpc*t0;t1=qpc*t1;s=t0/q2^(3*m)+t1/q2^(5*m);qk=1;
487 for(k=1,N,qk=qk/q2^2; temp0=t1;t1=-((qk/q2)^2*t0+(q2^2*(qk/q2) + (qk/q2)^3

- (qk/q2)^2 + (qk/q2))*(1+(qk/q2))*(1-q2^2*(qk/q2)^2)*temp0)/(q2 ^4*(1+(
qk/q2))*(1-q2^2*(qk/q2)^2)*(1-(qk/q2)^2/q2^4)*(1-(qk/q2)^2/q2^2));t0=
temp0;s=s+(qk/q2^5)^m*t1);

488 s}
489

490 {Zhatf5(q,m,N,ss=1)=
491 local(t0 ,t1,t0j ,t1j ,s,temp0 ,qk ,qj,qpc);
492 qpc=qpochinfty(q,q,N,ss ,1)*qpochinfty(-q,q,N,ss);
493 t0j=(-1)^m;t0=t0j;t1j=(-1)^m*q^(3)/qpoch(-q,q,1)/qpoch(q,q,2);t1=t1j;qj=1;
494 for(j=1,N,qj=qj*q;t0j=-t0j*q/(1-qj^2);t0=t0+t0j;t1j=-t1j*q^2/(1 -qj)/(1+qj*

q);t1=t1+t1j);
495 t0=qpc*t0;t1=qpc*t1;s=t0/q^m+t1/q^(2*m);qk=1;
496 for(k=1,N,qk=qk/q;temp0=t1;t1=-((-qk)^2*t0+(q*(-qk) + (-qk)^3 - (-qk)^2 +

(-qk))*(1+(-qk))*(1-q*(-qk)^2)*temp0)/(q^2*(1+( -qk))*(1-q*(-qk)^2)
*(1-(-qk)^2/q^2)*(1-(-qk)^2/q));t0=temp0;s=s+(qk/q^2)^m*t1);

497 s}
498

499 {Zhatf6(q2 ,m,N,ss=1)=
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500 local(t0 ,t1,t0j ,t1j ,s,temp0 ,qk ,qj,qpc);
501 qpc=qpochinfty(q2^2,q2^2,N,ss ,1)*qpochinfty(-q2^3,q2^2,N,ss);
502 t0j=(-1)^(m)*q2^2/ qpoch(q2^2,q2^2,1);t0=t0j;
503 t1j=(-1)^(m)*q2^12/ qpoch(-q2^3,q2^2,1)/qpoch(q2^2,q2^2,3);
504 t1=t1j;qj=1;
505 for(j=1,N,qj=qj*q2^2;t0j=-t0j*q2^3/(1 -qj)/(1+qj*q2);t0=t0+t0j;t1j=-t1j*q2

^5/(1-qj)/(1+qj*q2^3);t1=t1+t1j);
506 t0=qpc*t0;t1=qpc*t1;s=t0/q2^(3*m)+t1/q2^(5*m);qk=1;
507 for(k=1,N,qk=qk/q2^2; temp0=t1;t1=-((-qk/q2)^2*t0+(q2^2*(-qk/q2) + (-qk/q2)

^3 - (-qk/q2)^2 + (-qk/q2))*(1+(-qk/q2))*(1-q2^2*(-qk/q2)^2)*temp0)/(q2
^4*(1+( -qk/q2))*(1-q2^2*(-qk/q2)^2)*(1-(-qk/q2)^2/q2^4)*(1-(-qk/q2)^2/
q2^2));t0=temp0;s=s+(qk/q2^5)^m*t1);

508 s}
509

510 {Zhatf7(q4 ,m,N,ss=1)=
511 local(t0 ,t1,t0j ,t1j ,s,temp0 ,qk ,qj,q22 ,qpc);
512 q22=q4^2; qpc=qpochinfty(q22^2,q22^2,N,ss ,1)*qpochinfty(q22 ,q22^2,N,ss);
513 t0j=q4/qpoch(q22^2,q22^2,1);t0=t0j;t1j=q4^9/ qpoch(q22 ,q22^2,-1)/qpoch(q22

^2,q22^2,3);t1=t1j;qj=1;
514 for(j=1,N,qj=qj*q22^2;t0j=t0j*q22 ^3/(1 -qj)/(1-qj/q22);t0=t0+t0j;t1j=t1j*

q22 ^5/(1-qj)/(1-qj/q22^3);t1=t1+t1j);
515 t0=t0*qpc;t1=t1*qpc;s=t0/q22 ^(3*m)+t1/q22 ^(5*m);qk=1;
516 for(k=1,N,qk=qk/q22^2; temp0=t1;t1=-((qk/q22)^2*t0+(q22 ^2*(qk/q22) + (qk/

q22)^3 - (qk/q22)^2 + (qk/q22))*(1+(qk/q22))*(1-q22 ^2*(qk/q22)^2)*temp0
)/(q22 ^4*(1+( qk/q22))*(1-q22 ^2*(qk/q22)^2)*(1-(qk/q22)^2/ q22 ^4)*(1-(qk/
q22)^2/ q22 ^2));t0=temp0;s=s+(qk/q22^5)^m*t1);

517 s}
518

519 {Zhatf8(q,m,N,ss=1)=
520 local(t0 ,t1,t0j ,t1j ,s,temp0 ,qk ,qj,qpc);
521 qpc=qpochinfty(q,q,N,ss ,1)*qpochinfty(-q,q,N,ss);
522 t0j=(-1)^(m);t0=t0j;t1j=(-1)^(m)*q/qpoch(-q,q,-1)/qpoch(q,q,2);t1=t1j;qj

=1;
523 for(j=1,N,qj=qj*q;t0j=-t0j*q/(1-qj^2);t0=t0+t0j;t1j=-t1j*q^2/(1 -qj)/(1+qj/

q);t1=t1+t1j);
524 t0=t0*qpc;t1=t1*qpc;s=t0/q^m+t1/q^(2*m);qk=1;
525 for(k=1,N,qk=qk/q;temp0=t1;t1=-((-qk)^2*t0+(q*(-qk) + (-qk)^3 - (-qk)^2 +

(-qk))*(1+(-qk))*(1-q*(-qk)^2)*temp0)/(q^2*(1+( -qk))*(1-q*(-qk)^2)
*(1-(-qk)^2/q^2)*(1-(-qk)^2/q));t0=temp0;s=s+(qk/q^2)^m*t1);

526 s}
527

528 {Zhatf9(q4 ,m,N,ss=1)=
529 local(t0 ,t1,t0j ,t1j ,s,temp0 ,qk ,q22 ,qpc);
530 q22=q4^2; qpc=qpochinfty(q22^2,q22^2,N,ss ,1)*qpochinfty(-q22 ,q22^2,N,ss);
531 t0j=(-1)^(m)*q4/qpoch(q22^2,q22^2,1);t0=t0j;t1j=(-1)^(m)*q4^9/ qpoch(-q22 ,

q22^2,-1)/qpoch(q22^2,q22^2,3);t1=t1j;qj=1;
532 for(j=1,N,qj=qj*q22^2;t0j=-t0j*q22 ^3/(1 -qj)/(1+qj/q22);t0=t0+t0j;t1j=-t1j*

q22 ^5/(1-qj)/(1+qj/q22^3);t1=t1+t1j);
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533 t0=t0*qpc;t1=t1*qpc;s=t0/q22 ^(3*m)+t1/q22 ^(5*m);qk=1;
534 for(k=1,N,qk=qk/q22^2; temp0=t1;t1=-((-qk/q22)^2*t0+(q22^2*(-qk/q22) + (-qk

/q22)^3 - (-qk/q22)^2 + (-qk/q22))*(1+( -qk/q22))*(1-q22^2*(-qk/q22)^2)*
temp0)/(q22 ^4*(1+( -qk/q22))*(1-q22^2*(-qk/q22)^2)*(1-(-qk/q22)^2/q22^4)
*(1-(-qk/q22)^2/q22 ^2));t0=temp0;s=s+(qk/q22 ^5)^m*t1);

535 s}
536

537

538 {ZHAT7x7(q4 ,m,N,s=1)=
539 if(s==1,
540 [
541 Zhatf2(q4^4,m,N,s),Zhatf4(q4^2,m,N,s),Zhatf5(q4^4,m,N,s),Zhatf6(q4^2,m,N,s

),Zhatf7(q4 ,m,N,s),Zhatf8(q4^4,m,N,s),Zhatf9(q4 ,m,N,s);
542 Zhatf2(q4^4,m+1,N,s),Zhatf4(q4^2,m+1,N,s),Zhatf5(q4^4,m+1,N,s),Zhatf6(q4

^2,m+1,N,s),Zhatf7(q4 ,m+1,N,s),Zhatf8(q4^4,m+1,N,s),Zhatf9(q4 ,m+1,N,s);
543 Zhatf2(q4^4,m+2,N,s),Zhatf4(q4^2,m+2,N,s),Zhatf5(q4^4,m+2,N,s),Zhatf6(q4

^2,m+2,N,s),Zhatf7(q4 ,m+2,N,s),Zhatf8(q4^4,m+2,N,s),Zhatf9(q4 ,m+2,N,s);
544 Zhatf2(q4^4,m+3,N,s),Zhatf4(q4^2,m+3,N,s),Zhatf5(q4^4,m+3,N,s),Zhatf6(q4

^2,m+3,N,s),Zhatf7(q4 ,m+3,N,s),Zhatf8(q4^4,m+3,N,s),Zhatf9(q4 ,m+3,N,s);
545 Zhatf2(q4^4,m+4,N,s),Zhatf4(q4^2,m+4,N,s),Zhatf5(q4^4,m+4,N,s),Zhatf6(q4

^2,m+4,N,s),Zhatf7(q4 ,m+4,N,s),Zhatf8(q4^4,m+4,N,s),Zhatf9(q4 ,m+4,N,s);
546 Zhatf2(q4^4,m+5,N,s),Zhatf4(q4^2,m+5,N,s),Zhatf5(q4^4,m+5,N,s),Zhatf6(q4

^2,m+5,N,s),Zhatf7(q4 ,m+5,N,s),Zhatf8(q4^4,m+5,N,s),Zhatf9(q4 ,m+5,N,s);
547 Zhatf2(q4^4,m+6,N,s),Zhatf4(q4^2,m+6,N,s),Zhatf5(q4^4,m+6,N,s),Zhatf6(q4

^2,m+6,N,s),Zhatf7(q4 ,m+6,N,s),Zhatf8(q4^4,m+6,N,s),Zhatf9(q4 ,m+6,N,s)
548 ],
549 [
550 Zhatf1(q4^4,m,N,s),Zhatf4(q4^2,m,N,s),Zhatf5(q4^4,m,N,s),Zhatf6(q4^2,m,N,s

),Zhatf7(q4 ,m,N,s),Zhatf8(q4^4,m,N,s),Zhatf9(q4 ,m,N,s);
551 Zhatf1(q4^4,m+1,N,s),Zhatf4(q4^2,m+1,N,s),Zhatf5(q4^4,m+1,N,s),Zhatf6(q4

^2,m+1,N,s),Zhatf7(q4 ,m+1,N,s),Zhatf8(q4^4,m+1,N,s),Zhatf9(q4 ,m+1,N,s);
552 Zhatf1(q4^4,m+2,N,s),Zhatf4(q4^2,m+2,N,s),Zhatf5(q4^4,m+2,N,s),Zhatf6(q4

^2,m+2,N,s),Zhatf7(q4 ,m+2,N,s),Zhatf8(q4^4,m+2,N,s),Zhatf9(q4 ,m+2,N,s);
553 Zhatf1(q4^4,m+3,N,s),Zhatf4(q4^2,m+3,N,s),Zhatf5(q4^4,m+3,N,s),Zhatf6(q4

^2,m+3,N,s),Zhatf7(q4 ,m+3,N,s),Zhatf8(q4^4,m+3,N,s),Zhatf9(q4 ,m+3,N,s);
554 Zhatf1(q4^4,m+4,N,s),Zhatf4(q4^2,m+4,N,s),Zhatf5(q4^4,m+4,N,s),Zhatf6(q4

^2,m+4,N,s),Zhatf7(q4 ,m+4,N,s),Zhatf8(q4^4,m+4,N,s),Zhatf9(q4 ,m+4,N,s);
555 Zhatf1(q4^4,m+5,N,s),Zhatf4(q4^2,m+5,N,s),Zhatf5(q4^4,m+5,N,s),Zhatf6(q4

^2,m+5,N,s),Zhatf7(q4 ,m+5,N,s),Zhatf8(q4^4,m+5,N,s),Zhatf9(q4 ,m+5,N,s);
556 Zhatf1(q4^4,m+6,N,s),Zhatf4(q4^2,m+6,N,s),Zhatf5(q4^4,m+6,N,s),Zhatf6(q4

^2,m+6,N,s),Zhatf7(q4 ,m+6,N,s),Zhatf8(q4^4,m+6,N,s),Zhatf9(q4 ,m+6,N,s)
557 ])};
558

559 {ZHAT8x8(q4 ,m,N,s=1)=
560 if(s==1,
561 [
562 Zhatf1(q4^4,m,N,s),Zhatf2(q4^4,m,N,s),Zhatf4(q4^2,m,N,s),Zhatf5(q4^4,m,N,s

),Zhatf6(q4^2,m,N,s),Zhatf7(q4 ,m,N,s),Zhatf8(q4^4,m,N,s),Zhatf9(q4,m,N,
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s);
563 Zhatf1(q4^4,m+1,N,s),Zhatf2(q4^4,m+1,N,s),Zhatf4(q4^2,m+1,N,s),Zhatf5(q4

^4,m+1,N,s),Zhatf6(q4^2,m+1,N,s),Zhatf7(q4 ,m+1,N,s),Zhatf8(q4^4,m+1,N,s
),Zhatf9(q4 ,m+1,N,s);

564 Zhatf1(q4^4,m+2,N,s),Zhatf2(q4^4,m+2,N,s),Zhatf4(q4^2,m+2,N,s),Zhatf5(q4
^4,m+2,N,s),Zhatf6(q4^2,m+2,N,s),Zhatf7(q4 ,m+2,N,s),Zhatf8(q4^4,m+2,N,s
),Zhatf9(q4 ,m+2,N,s);

565 Zhatf1(q4^4,m+3,N,s),Zhatf2(q4^4,m+3,N,s),Zhatf4(q4^2,m+3,N,s),Zhatf5(q4
^4,m+3,N,s),Zhatf6(q4^2,m+3,N,s),Zhatf7(q4 ,m+3,N,s),Zhatf8(q4^4,m+3,N,s
),Zhatf9(q4 ,m+3,N,s);

566 Zhatf1(q4^4,m+4,N,s),Zhatf2(q4^4,m+4,N,s),Zhatf4(q4^2,m+4,N,s),Zhatf5(q4
^4,m+4,N,s),Zhatf6(q4^2,m+4,N,s),Zhatf7(q4 ,m+4,N,s),Zhatf8(q4^4,m+4,N,s
),Zhatf9(q4 ,m+4,N,s);

567 Zhatf1(q4^4,m+5,N,s),Zhatf2(q4^4,m+5,N,s),Zhatf4(q4^2,m+5,N,s),Zhatf5(q4
^4,m+5,N,s),Zhatf6(q4^2,m+5,N,s),Zhatf7(q4 ,m+5,N,s),Zhatf8(q4^4,m+5,N,s
),Zhatf9(q4 ,m+5,N,s);

568 Zhatf1(q4^4,m+6,N,s),Zhatf2(q4^4,m+6,N,s),Zhatf4(q4^2,m+6,N,s),Zhatf5(q4
^4,m+6,N,s),Zhatf6(q4^2,m+6,N,s),Zhatf7(q4 ,m+6,N,s),Zhatf8(q4^4,m+6,N,s
),Zhatf9(q4 ,m+6,N,s);

569 Zhatf1(q4^4,m+7,N,s),Zhatf2(q4^4,m+7,N,s),Zhatf4(q4^2,m+7,N,s),Zhatf5(q4
^4,m+7,N,s),Zhatf6(q4^2,m+7,N,s),Zhatf7(q4 ,m+7,N,s),Zhatf8(q4^4,m+7,N,s
),Zhatf9(q4 ,m+7,N,s)

570 ],
571 [
572 Zhatf3(q4^4,m,N,s),Zhatf1(q4^4,m,N,s),Zhatf4(q4^2,m,N,s),Zhatf5(q4^4,m,N,s

),Zhatf6(q4^2,m,N,s),Zhatf7(q4 ,m,N,s),Zhatf8(q4^4,m,N,s),Zhatf9(q4,m,N,
s);

573 Zhatf3(q4^4,m+1,N,s),Zhatf1(q4^4,m+1,N,s),Zhatf4(q4^2,m+1,N,s),Zhatf5(q4
^4,m+1,N,s),Zhatf6(q4^2,m+1,N,s),Zhatf7(q4 ,m+1,N,s),Zhatf8(q4^4,m+1,N,s
),Zhatf9(q4 ,m+1,N,s);

574 Zhatf3(q4^4,m+2,N,s),Zhatf1(q4^4,m+2,N,s),Zhatf4(q4^2,m+2,N,s),Zhatf5(q4
^4,m+2,N,s),Zhatf6(q4^2,m+2,N,s),Zhatf7(q4 ,m+2,N,s),Zhatf8(q4^4,m+2,N,s
),Zhatf9(q4 ,m+2,N,s);

575 Zhatf3(q4^4,m+3,N,s),Zhatf1(q4^4,m+3,N,s),Zhatf4(q4^2,m+3,N,s),Zhatf5(q4
^4,m+3,N,s),Zhatf6(q4^2,m+3,N,s),Zhatf7(q4 ,m+3,N,s),Zhatf8(q4^4,m+3,N,s
),Zhatf9(q4 ,m+3,N,s);

576 Zhatf3(q4^4,m+4,N,s),Zhatf1(q4^4,m+4,N,s),Zhatf4(q4^2,m+4,N,s),Zhatf5(q4
^4,m+4,N,s),Zhatf6(q4^2,m+4,N,s),Zhatf7(q4 ,m+4,N,s),Zhatf8(q4^4,m+4,N,s
),Zhatf9(q4 ,m+4,N,s);

577 Zhatf3(q4^4,m+5,N,s),Zhatf1(q4^4,m+5,N,s),Zhatf4(q4^2,m+5,N,s),Zhatf5(q4
^4,m+5,N,s),Zhatf6(q4^2,m+5,N,s),Zhatf7(q4 ,m+5,N,s),Zhatf8(q4^4,m+5,N,s
),Zhatf9(q4 ,m+5,N,s);

578 Zhatf3(q4^4,m+6,N,s),Zhatf1(q4^4,m+6,N,s),Zhatf4(q4^2,m+6,N,s),Zhatf5(q4
^4,m+6,N,s),Zhatf6(q4^2,m+6,N,s),Zhatf7(q4 ,m+6,N,s),Zhatf8(q4^4,m+6,N,s
),Zhatf9(q4 ,m+6,N,s);

579 Zhatf3(q4^4,m+7,N,s),Zhatf1(q4^4,m+7,N,s),Zhatf4(q4^2,m+7,N,s),Zhatf5(q4
^4,m+7,N,s),Zhatf6(q4^2,m+7,N,s),Zhatf7(q4 ,m+7,N,s),Zhatf8(q4^4,m+7,N,s
),Zhatf9(q4 ,m+7,N,s)])};
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580

581 {ZHAT1x8(q4 ,m,N,s=1)=
582 if(s==1,
583 [Zhatf1(q4^4,m,N,s),Zhatf2(q4^4,m,N,s),Zhatf4(q4^2,m,N,s),Zhatf5(q4^4,m,N,

s),Zhatf6(q4^2,m,N,s),Zhatf7(q4 ,m,N,s),Zhatf8(q4^4,m,N,s),Zhatf9(q4,m,N
,s)],

584 [Zhatf3(q4^4,m,N,s),Zhatf1(q4^4,m,N,s),Zhatf4(q4^2,m,N,s),Zhatf5(q4^4,m,N,
s),Zhatf6(q4^2,m,N,s),Zhatf7(q4 ,m,N,s),Zhatf8(q4^4,m,N,s),Zhatf9(q4,m,N
,s)])};

585

586 \\check of quad rels
587 ZHAT7x7(q4+O(q4^500) ,-3,500)*ZHAT7x7 (1/q4+O(q4 ^500) ,-3,500,-1)~-P(1/q4^12,

q4^4)
588

589

590 /* ********************************************** */
591 \\ computing stokes matrices
592 /* ********************************************** */
593

594 \\ canonical basis I
595 ZHAT1x7(E(-1/(E(0.01) *100) /4) ,0 ,100*500)-phivec7(-E(0.01) *100)

*[-1,0,0,0,0,0,0; 0,-1,0,0,0,0,0; 0,0,-1,0,0,0,0; 0,0,0,-1,0,0,0;
0,0,0,0,-1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1]*SI(E(E(0.01) *100))*
ZHAT8x7(E(E(0.01) *100/4) ,-3,100)*matdiagonal ([-1,1,1,-1,-1,-1,1])*[E
(0.01) *100,0,0,0,0,0,0; 0,0,1,0,0,0,0; 0,1,0,0,0,0,0; 0,0,0,1,0,0,0;
0,0,0,0,0,1,0; 0,0,0,0,1,0,0; 0,0,0,0,0,0,1]

596 \\ = [ -1.5264 E-49 - 1.5231 E-49*I, -1.6190 E-51 - 1.4242 E-51*I, -1.3758
E-68 + 7.8474 E-69*I, 1.3758 E-68 - 7.8474 E-69*I, 1.6190 E-51 + 1.4242
E-51*I, 1.0288 E-55 + 4.4904 E-56*I, -1.0288 E-55 - 4.4904 E-56*I]

597

598 \\ canonical basis II
599 ZHAT1x7(E(-1/(E(1/2 -0.01) *100) /4) ,0 ,100*500)-phivec7(-E(1/2 -0.01) *100)

*[1,0,0,0,0,0,0; 0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0;
0,0,0,0,1,0,0; 0,0,0,0,0,0,1; 0,0,0,0,0,1,0]*SI(E(E(1/2 -0.01) *100))*
ZHAT8x7(E(E(1/2 -0.01) *100/4) ,-3,100)*matdiagonal ([-1,-1,-1,1,1,1,-1])*[
E(1/2 -0.01) *100,0,0,0,0,0,0; 0,0,1,0,0,0,0; 0,1,0,0,0,0,0;
0,0,0,1,0,0,0; 0,0,0,0,0,1,0; 0,0,0,0,1,0,0; 0,0,0,0,0,0,1]

600 \\ = [ -1.5264 E-49 + 1.5231 E-49*I, -1.6190 E-51 + 1.4242 E-51*I, -1.3758
E-68 - 7.8474 E-69*I, 1.3758 E-68 + 7.8474 E-69*I, 1.6190 E-51 - 1.4242
E-51*I, 1.0288 E-55 - 4.4904 E-56*I, -1.0288 E-55 + 4.4904 E-56*I]

601

602 \\I
603 SMI8x8(q4,N)=[-1,0,0,0,0,0,0,0; 0,-1,0,0,0,0,0,0; 0,0,-1,0,0,0,0,0;

0,0,0,-1,0,0,0,0; 0,0,0,0,-1,0,0,0; 0,0,0,0,0,-1,0,0; 0,0,0,0,0,0,1,0;
0,0,0,0,0,0,0,1]* SI8x8(q4^4)*ZHAT8x8(q4 ,-3,100)*matdiagonal
([-1,-1,1,1,-1,-1,-1,1])

604

605 \\II
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606 SMII8x8(q4,N)=[1,0,0,0,0,0,0,0; 0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0;
0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1;
0,0,0,0,0,0,1,0]* SI8x8(q4^4)*ZHAT8x8(q4 ,-3,100)*matdiagonal
([1,-1,-1,-1,1,1,1,-1])

607

608 SMI8x8(q4+O(q4 ^100) ,100)*SMII8x8(q4+O(q4 ^100) ,100)^(-1)-matrix(8,8,i,j,if(
i==j,1,0)+O(q4^50))

609 /*
610 [O(q4^10) O(q4^10) O(q4^10) O(q4^10) O(q4^10) O(q4^10) O(q4^10) O(q4^10)]
611

612 [-1 + q4^4 + 3*q4^8 + O(q4^10) -q4^4 - 2*q4^8 + O(q4^10) 1 + q4^4 + O(q4
^10) -q4^8 + O(q4^10) q4^4 + 2*q4^8 + O(q4^10) -1 - q4^4 + q4^8 + O(q4
^10) 1 - 3*q4^8 + O(q4^10) 1 - 3*q4^8 + O(q4^10)]

613

614 [q4^4 - q4^8 + O(q4^10) q4^8 + O(q4^10) -q4^4 - q4^8 + O(q4^10) O(q4^10) -
q4^8 + O(q4^10) q4^4 + q4^8 + O(q4^10) -q4^4 + O(q4^10) -q4^4 + O(q4
^10)]

615

616 [-1 + 2*q4^4 + q4^8 + O(q4^10) -q4^4 - q4^8 + O(q4^10) 1 + O(q4^10) -q4^8
+ O(q4^10) q4^4 + q4^8 + O(q4^10) -1 + q4^8 + O(q4^10) 1 - q4^4 - 2*q4
^8 + O(q4^10) 1 - q4^4 - 2*q4^8 + O(q4^10)]

617

618 [1 - 2*q4^4 - q4^8 + O(q4^10) q4^4 + q4^8 + O(q4^10) -1 + O(q4^10) q4^8 +
O(q4^10) -q4^4 - q4^8 + O(q4^10) 1 - q4^8 + O(q4^10) -1 + q4^4 + 2*q4^8
+ O(q4^10) -1 + q4^4 + 2*q4^8 + O(q4^10)]

619

620 [-q4^4 + q4^8 + O(q4^10) -q4^8 + O(q4^10) q4^4 + q4^8 + O(q4^10) O(q4^10)
q4^8 + O(q4^10) -q4^4 - q4^8 + O(q4^10) q4^4 + O(q4^10) q4^4 + O(q4^10)
]

621

622 [-1 + 3*q4^4 + q4^8 + O(q4^10) -q4^4 + O(q4^10) 1 - q4^4 - 2*q4^8 + O(q4
^10) -q4^8 + O(q4^10) q4^4 + O(q4^10) -1 + q4^4 + 3*q4^8 + O(q4^10) -2*
q4^4 - 3*q4^8 + O(q4^10) -2*q4^4 - 3*q4^8 + O(q4^10)]

623

624 [-1 + 3*q4^4 + q4^8 + O(q4^10) -q4^4 + O(q4^10) 1 - q4^4 - 2*q4^8 + O(q4
^10) -q4^8 + O(q4^10) q4^4 + O(q4^10) -1 + q4^4 + 3*q4^8 + O(q4^10) -2*
q4^4 - 3*q4^8 + O(q4^10) -2*q4^4 - 3*q4^8 + O(q4^10)]

625 */
626

627 \\ IV
628 ZHAT1x8(E(-1/(E( -0.001) *100) /4) ,0,100*3000, -1)-phivec8(-E( -0.001) *100)

*[-1,0,0,0,0,0,0,0; 0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0;
0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,-1,0; 0,0,0,0,0,0,0,-1]*
SI8x8(E(E( -0.001) *100))*ZHAT8x8(E(E( -0.001) *100/4) ,-3,100,-1)*
matdiagonal ([-1,-1,1,1,-1,-1,-1,1])*[1,0,0,0,0,0,0,0; 0,1/(E( -0.001)
*100) ^2,0,0,0,0,0,0; 0,0,0,1/(E( -0.001) *100) ,0,0,0,0; 0,0,1/(E( -0.001)
*100) ,0,0,0,0,0; 0,0,0,0,1/(E( -0.001) *100) ,0,0,0; 0,0,0,0,0,0,1/(E
( -0.001) *100) ,0; 0,0,0,0,0,1/(E( -0.001) *100) ,0,0; 0,0,0,0,0,0,0,1/(E
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( -0.001) *100)]
629 \\ = [2.2937 E-38 - 3.5670 E-38*I, -2.3174 E-53 - 7.7430 E-53*I, 1.1822 E

-51 + 3.8614 E-51*I, 4.3954 E-52 + 1.4803 E-51*I, 2.5418 E-52 + 8.4512
E-52*I, -1.1838 E-51 - 3.8671 E-51*I, 2.9963 E-52 + 1.0185 E-51*I,
-1.9835 E-52 - 6.6765 E-52*I]

630

631 \\III
632 ZHAT1x8(E(-1/(E(1/2+0.001) *100) /4) ,0,100*3000, -1)-phivec8(-E(1/2+0.001)

*100) *[1,0,0,0,0,0,0,0; 0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0;
0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1;
0,0,0,0,0,0,1,0]* SI8x8(E(E(1/2+0.001) *100))*ZHAT8x8(E(E(1/2+0.001)
*100/4) ,-3,100,-1)*matdiagonal ([1,1,1,1,-1,-1,-1,1])*[1,0,0,0,0,0,0,0;
0,1/(E(1/2+0.001) *100) ^2,0,0,0,0,0,0; 0,0,0,1/(E(1/2+0.001) *100)
,0,0,0,0; 0,0,1/(E(1/2+0.001) *100) ,0,0,0,0,0; 0,0,0,0,1/(E(1/2+0.001)
*100) ,0,0,0; 0,0,0,0,0,0,1/(E(1/2+0.001) *100) ,0; 0,0,0,0,0,1/(E
(1/2+0.001) *100) ,0,0; 0,0,0,0,0,0,0,1/(E(1/2+0.001) *100)]

633 \\ = [2.2937 E-38 + 3.5670 E-38*I, -2.3174 E-53 + 7.7430 E-53*I, 1.1822 E
-51 - 3.8614 E-51*I, 4.3954 E-52 - 1.4803 E-51*I, 2.5418 E-52 - 8.4512
E-52*I, -1.1838 E-51 + 3.8671 E-51*I, 2.9963 E-52 - 1.0185 E-51*I,
-1.9835 E-52 + 6.6765 E-52*I]

634

635 \\IV
636 SMIV8x8(q4,N)=[-1,0,0,0,0,0,0,0; 0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0;

0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,-1,0;
0,0,0,0,0,0,0,-1]* SI8x8 (1/q4^4)*ZHAT8x8 (1/q4 ,-3,N,-1)*matdiagonal
([-1,-1,1,1,-1,-1,-1,1])

637

638 \\III
639 SMIII8x8(q4 ,N)=[1,0,0,0,0,0,0,0; 0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0;

0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1;
0,0,0,0,0,0,1,0]* SI8x8 (1/q4^4)*ZHAT8x8 (1/q4 ,-3,N,-1)*matdiagonal
([1,1,1,1,-1,-1,-1,1])

640

641 SMIV8x8(q4+O(q4^100) ,100)*SMIII8x8(q4+O(q4 ^100) ,100)^(-1)-matrix(8,8,i,j,
if(i==j,1,0)+O(q4^10))

642 /*
643 [O(q4^10) O(q4^10) O(q4^10) O(q4^10) O(q4^10) O(q4^10) O(q4^10) O(q4^10)]
644

645 [O(q4^10) -q4^4 - 2*q4^8 + O(q4^10) q4^8 + O(q4^10) -q4^4 - q4^8 + O(q4
^10) q4^4 + q4^8 + O(q4^10) -q4^8 + O(q4^10) -q4^4 + O(q4^10) -q4^4 + O
(q4^10)]

646

647 [-1 + O(q4^10) 1 + q4^4 + O(q4^10) -q4^4 - q4^8 + O(q4^10) 1 + O(q4^10) -1
+ O(q4^10) q4^4 + q4^8 + O(q4^10) 1 - q4^4 - 2*q4^8 + O(q4^10) 1 - q4

^4 - 2*q4^8 + O(q4^10)]
648

649 [-q4^4 + q4^8 + O(q4^10) -q4^8 + O(q4^10) O(q4^10) -q4^8 + O(q4^10) q4^8 +
O(q4^10) O(q4^10) -q4^8 + O(q4^10) -q4^8 + O(q4^10)]
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650

651 [-q4^4 - q4^8 + O(q4^10) q4^4 + 2*q4^8 + O(q4^10) -q4^8 + O(q4^10) q4^4 +
q4^8 + O(q4^10) -q4^4 - q4^8 + O(q4^10) q4^8 + O(q4^10) q4^4 + O(q4^10)
q4^4 + O(q4^10)]

652

653 [-2*q4^8 + O(q4^10) -1 - q4^4 + q4^8 + O(q4^10) q4^4 + q4^8 + O(q4^10) -1
+ q4^8 + O(q4^10) 1 - q4^8 + O(q4^10) -q4^4 - q4^8 + O(q4^10) -1 + q4^4
+ 3*q4^8 + O(q4^10) -1 + q4^4 + 3*q4^8 + O(q4^10)]

654

655 [2*q4^8 + O(q4^10) 1 - 3*q4^8 + O(q4^10) -q4^4 + O(q4^10) 1 - q4^4 - 2*q4
^8 + O(q4^10) -1 + q4^4 + 2*q4^8 + O(q4^10) q4^4 + O(q4^10) -2*q4^4 -
3*q4^8 + O(q4^10) -2*q4^4 - 3*q4^8 + O(q4^10)]

656

657 [q4^4 + 2*q4^8 + O(q4^10) 1 - 3*q4^8 + O(q4^10) -q4^4 + O(q4^10) 1 - q4^4
- 2*q4^8 + O(q4^10) -1 + q4^4 + 2*q4^8 + O(q4^10) q4^4 + O(q4^10) -2*q4
^4 - 3*q4^8 + O(q4^10) -2*q4^4 - 3*q4^8 + O(q4^10)]

658 */

The file 4112data begins as follows.
1 {A[1]=[1497746 , 1345119 , -3675733, 2082815 , -839488, -283405, 383432]};
2 {A[2]=[3014838521575 , 2732414541176 , -7414786842283 , 4197826806919 ,

-1690529009777 , -574198051621 , 771765277669]};
3 ...
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